首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the HLA, H2, and other mammalian MHC:, the class I and II loci are separated by the so-called class III region comprised of approximately 60 genes that are functionally and evolutionarily unrelated to the class I/II genes. To explore the origin of this island of unrelated loci in the middle of the MHC: 19 homologues of HLA class III genes, we identified 19 homologues of HLA class III genes as well as 21 additional non-class I/II HLA homologues in the zebrafish and mapped them by testing a panel of 94 zebrafish-hamster radiation hybrid cell lines. Six of the HLA class III and eight of the flanking homologues were found to be linked to the zebrafish class I (but not class II) loci in linkage group 19. The remaining homologous loci were found to be scattered over 14 zebrafish linkage groups. The linkage group 19 contains at least 25 genes (not counting the class I loci) that are also syntenic on human chromosome 6. This gene assembly presumably represents the pre-MHC: that existed before the class I/II genes arose. The pre-MHC: may not have contained the complement and other class III genes involved in immune response.  相似文献   

3.
The overall order of the regions of the swine major histocompatibility complex (MHC), the SLA complex, was determined by pulsed field gel electrophoresis (PFGE). It was found that the order of the regions is class II-class III-class I. A class I probe hybridized to a 420 kb Mlu I and a 420 kb Not I fragment as did a class III probe for C2. None of the class II probes hybridized to these fragments. Thus, linkage of class I to class III was shown. The class III C2, Bf, and C4 genes were found to residue in a 190 kb Not I fragment. Linkage of class III and class II genes was shown when both the class III C4 and the class II DR probes hybridized to the same 195 kb Sac II and 340 kb Not I fragments. The class I probe did not hybridize to these fragments. The order of the regions, class II-class III-class I, is similar to that of human MHC genes and may have been conserved in evolution so that coordinated expression of MHC genes could be achieved.  相似文献   

4.
The class-specific expression of patatin genes was investigated by analysing four new patatin genes. A class I patatin gene from cv. Berolina as well as a class I and two class II patatin genes from the monohaploid cultivar AM 80/5793 were isolated and partially sequenced. Sequence comparison indicates rearrangements as the major source for the generation of diversity between the different members of the classes. The expression of single genes was studied in potato plants transformed with chimaeric genes where the putative patatin promoters were fused to the GUS reporter gene. A detailed histochemical analysis reveals that both class I genes are expressed as the previously described class I patatin gene B33 from cv. Berolina [1], i.e. in the starch-containing cells of potato tubers and in sucrose-induced leaves. The class II gene pgT12 shows the same pattern as the previously described class II gene pgT2 [2], i.e. expression in root tips and in the vascular tissue of tubers, whereas no activity was detectable for pgT4. Thus the expression pattern of both classes of genes seems to be stable at least within or even between different cultivars.  相似文献   

5.
Comparison of MHC genes among distantly related members of the genus Mus   总被引:5,自引:0,他引:5  
The genomic content of class I and class II MHC DNA sequences in a variety of wild mice has been analyzed. The panel of mice includes members of three subgenera of the genus Mus. By genomic hybridization with the use of a variety of DNA probes, both class I and class II DNA sequences appear to be conserved in all of the species examined. However, the number of class I DNA sequences differs among the species. Furthermore, this variation appears to result from differential increases within subsets of class I genes. These data suggest that the class I multigene family is dynamic and changing over short periods of evolutionary time. In contrast, none of the class II genes appears to vary in copy number. More extensive polymorphism was noted amongst the class II beta genes than the alpha genes. Interestingly, the genomic sequence corresponding to E beta 2 is highly conserved, leading to the prediction that it is a genetically functional sequence.  相似文献   

6.
7.
8.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

9.
Major histocompatibility complex (MHC) molecules serve as peptide receptors. These peptides are derived from processed cellular or extra-cellular antigens. The MHC gene complex encodes two major classes of molecules, MHC class I and class II, whose function is to present peptides to CD8+ (cytotoxic) and CD4+ (helper) T cells, respectively. The genes encoding both classes of MHC molecules seem to originate from a common ancestral gene. One of the hallmarks of the MHC is its extensive polymorphism which displays locus and allele-specific characteristics among the various MHC class I and class II genes. Because of its central role in immunosurveillance and in various disease states, the MHC is one of the best studied genetic systems. This review addresses several aspects of MHC class I and class II gene regulation in human and in particular, the contribution to the constitutive and cytokine-induced expression of MHC class I and II genes of MHC class-specific regulatory elements and regulatory elements which apparently are shared by the promoters of MHC class I and class II genes. Received: 12 January 1998  相似文献   

10.
The classical human interferon-alpha (HuIFN-alpha) gene family is estimated to consist of 15 or more nonallelic members which encode proteins sharing greater than 77% amino acid sequence homology. Low-stringency hybridization with a HuIFN-alpha cDNA probe permitted the isolation of two distinct classes of bovine IFN-alpha genes. The first subfamily (class I) is more closely related to the known HuIFN-alpha genes than to the second subfamily (class II) of bovine IFN-alpha genes. Extensive analysis of the human genome has revealed a HuIFN-alpha gene subfamily corresponding to the class II bovine IFN-alpha genes. The class I human and bovine IFN-alpha genes encode mature IFN polypeptides of 165 to 166 amino acids, whereas the class II IFN-alpha genes encode 172 amino acid proteins. Expression in Escherichia coli of members of both gene subfamilies results in polypeptides having potent antiviral activity. In contrast to previous studies which found no evidence of class II IFN-alpha protein or mRNA expression, we demonstrate that the class I and class II IFN-alpha genes are coordinately induced in response to viral infection.  相似文献   

11.
12.
The overall order of the regions of the swine major histocompatibility complex (MHC), the SLA complex, was determined by pulsed field gel electrophoresis (PFGE). It was found that the order of the regions is class II-class III-class I. A class I probe hybridized to a 420 kbMlu I and a 420 kbNot I fragment as did a class III probe forC2. None of the class II probes hybridized to these fragments. Thus, linkage of class I to class III was shown. The class IIiC2, Bf, andC4 genes were found to reside in a 190 kbNot I fragment. Linkage of class III and class II genes was shown when both the class IIiC4 and the class IiDR probes hybridized to the same 195 kbSac II and 340 kbNot I fragments. The class I probe did not hybridize to these fragments. The order of the regions, class II-class III-class I, is similar to that of human MHC genes and may have been conserved in evolution so that coordinated expression of MHC genes could be achieved.  相似文献   

13.
Cartilaginous fish (e.g., sharks) are derived from the oldest vertebrate ancestor having an adaptive immune system, and thus are key models for examining MHC evolution. Previously, family studies in two shark species showed that classical class I (UAA) and class II genes are genetically linked. In this study, we show that proteasome genes LMP2 and LMP7, shark-specific LMP7-like, and the TAP1/2 genes are linked to class I/II. Functional LMP7 and LMP7-like genes, as well as multiple LMP2 genes or gene fragments, are found only in some sharks, suggesting that different sets of peptides might be generated depending upon inherited MHC haplotypes. Cosmid clones bearing the MHC-linked classical class I genes were isolated and shown to contain proteasome gene fragments. A non-MHC-linked LMP7 gene also was identified on another cosmid, but only two exons of this gene were detected, closely linked to a class I pseudogene (UAA-NC2); this region probably resulted from a recent duplication and translocation from the functional MHC. Tight linkage of proteasome and class I genes, in comparison with gene organizations of other vertebrates, suggests a primordial MHC organization. Another nonclassical class I gene (UAA-NC1) was detected that is linked neither to MHC nor to UAA-NC2; its high level of sequence similarity to UAA suggests that UAA-NC1 also was recently derived from UAA and translocated from MHC. These data further support the principle of a primordial class I region with few class I genes. Finally, multiple paternities in one family were demonstrated, with potential segregation distortions.  相似文献   

14.
15.
Despite accumulating sequence data, information on the function of major histocompatibility complex (MHC) genes in fish is scarce. In contrast to the genome organization in higher vertebrates, the polymorphic MHC class I and II genes are not linked in the teleost genome. A previous study found an MHC class II linkage group to be a major determinant in the rejection of allogeneic scales by a teleost species (Cardwell et al. 2001). The present study investigated whether the teleost MHC class I linkage group can be involved in allograft rejection. Erythrocytes were chosen as grafts since they express MHC class I, but do not express class II. Rainbow trout erythrocytes expressing different MHC class I alleles were differentially stained, mixed and injected into recipients that were of the same sibling group as the donors. The MHC class I linkage group was the major determinant for in vivo graft rejection.  相似文献   

16.
The sequence-based map of a part of the rhesus macaque major histocompatibility complex (MHC) extended class II region is presented. The sequenced region encompasses 67,401 bp and contains the SACM2L, RING1, FABGL and KE4 genes, as well as the HTATSF1-like and ZNF-like pseudogenes. Similar to human, but different from rat and mouse, no class I genes are found in the SACM2L- RING1 interval. The rhesus macaque extended MHC class II region shows a high degree of conservation of exonic as well as intronic and intergenic sequences compared with the respective human region. It is concluded that this particular genomic organization of the extended class II region-i.e., the absence of class I genes and the presence of the HTATSF1-like and ZNF-like pseudogenes-can be traced back to a common ancestor of humans and rhesus macaques about 23 million years ago.  相似文献   

17.
Major histocompatibility complex (MHC) genes code for key proteins of the adaptive immune system, which present antigens from intra-cellular (MHC class I) and extra-cellular (MHC class II) pathogens. Because of their unprecedented diversity, MHC genes have long been an object of scientific interest, but due to methodological difficulties in genotyping of duplicated loci, our knowledge on the evolution of the MHC across different vertebrate lineages is still limited. Here, we compared the evolution of MHC class I and class II genes in three sister clades of common passerine birds, finches (Fringillinae and Carduelinae) and buntings (Emberizidae) using a uniform methodological (genotyping and data processing) approach and uniform sample sizes. Our analyses revealed contrasting evolutionary trajectories of the two MHC classes. We found a stronger signature of pervasive positive selection and higher allele diversity (allele numbers) at the MHC class I than class II. In contrast, MHC class II genes showed greater allele divergence (in terms of nucleotide diversity) and a much stronger recombination (gene conversion) signal. Gene copy numbers at both MHC class I and class II evolved via fluctuating selection and drift (Brownian Motion evolution), but the evolutionary rate was higher at class I. Our study constitutes one of few existing examples, where evolution of MHC class I and class II genes was directly compared using a multi-species approach. We recommend that re-focusing MHC research from single-species and single-class approaches towards multi-species analyses of both MHC classes can substantially increase our understanding MHC evolution in a broad phylogenetic context.Subject terms: Molecular evolution, Immunogenetics  相似文献   

18.
Molecular analyses of genes in the rabbit MHC (RLA) by pulsed field gel electrophoresis have shown that the relative order of class II genes (DP, DO, DQ, DR) is identical to that in humans and similar to that in the mouse. However, a major difference from either HLA or H-2 was observed at the DR end of the RLA class II complex: class I genes are located in close proximity to DR with no interposed class III sequences. A MluI fragment of 180 kb and a 210-kb SalI fragment both hybridized with the DR probe as well as with different class I probes including that for pR27, a class I gene with T cell-limited pattern of expression. Comparison of two different RLA haplotypes, A and B, indicated that the distance between the DQ and DR subregions differs by approximately 700 kb in the two haplotypes. Testing other unrelated rabbits suggested that this difference segregates within the rabbit population and presumably derives from an insertion/deletion event in different haplotypes. A further difference between the A and B haplotypes included variable distance between genes encoding DO beta and DP; the DR end of the complex and the class I genes linkage was conserved in the two haplotypes.  相似文献   

19.
Recent large-scale sequencing and comparative analyses of the major histocompatibility complex (Mhc) provide a novel view of this long-studied region. The main insight is that even though Mhcs are defined by the presence of the Mhc class I and II genes, the regions encoding class I/II histocompatibility antigens are the least conserved among the species; hence the difficulty of modeling the human class I/II-linked diseases. Fortunately, the majority of the genes in the Mhc, the non-class I/II genes, are conserved among the investigated mammals. The full set of Mhc genes in their evolutionary context presents new possibilities to study Mhc-linked diseases by allowing systematic evaluation of the various experimental animals and approaches.  相似文献   

20.
To clarify the evolutionary origin of the linkage of the MHC class III complement genes with the MHC class I and II genes, we isolated C4 cDNA from the banded hound shark (Triakis scyllium). Upon phylogenetic tree analysis, shark C4 formed a well-supported cluster with C4 of higher vertebrates, indicating that the C3/C4 gene duplication predated the divergence of cartilaginous fish from the main line of vertebrate evolution. The deduced amino acid sequence predicted the typical C4 three-subunits chain structure, but without the histidine residue catalytic for the thioester bond, suggesting the human C4A-like specificity. The linkage analysis of the complement genes, one C4 and two factor B (Bf) genes, to the shark MHC was performed using 56 siblings from two typing panels of T. scyllium and Ginglymostoma cirratum. The C4 and one of two Bf genes showed a perfect cosegregation with the class I and II genes, whereas two recombinants were identified for the other Bf gene. These results indicate that the linkage between the complement C4 and Bf genes, as well as the linkage between these complement genes and the MHC class I and II genes were established before the emergence of cartilaginous fish >460 million years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号