首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model of the compartmentalized energy transfer in cardiac cells is described and used for interpretation of novel experimental data obtained by using phosphorus NMR for determination of the energy fluxes in the isolated hearts of transgenic mice with knocked out creatine kinase isoenzymes. These experiments were designed to study the meaning and importance of compartmentation of creatine kinase isoenzymes in the cells in vivo. The model was constructed to describe quantitatively the processes of energy production, transfer, utilization, and feedback between these processes. It describes the production of ATP in mitochondrial matrix space by ATP synthase, use of this ATP for phosphocreatine production in the mitochondrial creatine kinase reaction coupled to the adenine nucleotide translocation, diffusional exchange of metabolites in the cytoplasmic space, and use of phosphocreatine for resynthesis of ATP in the myoplasmic creatine kinase reaction. It accounts also for the recently discovered phenomenon of restricted diffusion of adenine nucleotides through mitochondrial outer membrane porin pores (VDAC). Practically all parameters of the model were determined experimentally. The analysis of energy fluxes between different cellular compartments shows that in all cellular compartments of working heart cells the creatine kinase reaction is far from equilibrium in the systolic phase of the contraction cycle and approaches equilibrium only in cytoplasm and only in the end-diastolic phase of the contraction cycle.Experimental determination of the relationship between energy fluxes by a 31P-NMR saturation transfer method and workload in isolated and perfused heart of transgenic mice deficient in MM isoenzyme of the creatine kinase, MM -/- showed that in the hearts from wild mice, containing all creatine kinase isoenzymes, the energy fluxes determined increased 3-4 times with elevation of the workload. By contrast, in the hearts in which only the mitochondrial creatine kinase was active, the energy fluxes became practically independent of the workload in spite of the preservation of 26% of normal creatine kinase activity. These results cannot be explained on the basis of the conventional near-equilibrium theory of creatine kinase in the cells, which excludes any difference between creatine kinase isoenzymes. However, these apparently paradoxical experimental results are quantitatively described by a mathematical model of the compartmentalized energy transfer based on the steady state kinetics of coupled creatine kinase reactions, compartmentation of creatine kinase isoenzymes in the cells, and the kinetics of ATP production and utilization reactions. The use of this model shows that: (1) in the wild type heart cells a major part of energy is transported out of mitochondria via phosphocreatine, which is used for complete regeneration of ATP locally in the myofibrils - this is the quantitative estimate for PCr pathway; (2) however, in the absence of MM-creatine kinase in the myofibrils in transgenic mice the contraction results in a very rapid rise of ADP in cytoplasmic space, that reverses the mitochondrial creatine kinase reaction in the direction of ATP production. In this way, because of increasing concentrations of cytoplasmic ADP, mitochondrial creatine kinase is switched off functionally due to the absence of its counterpart in PCr pathway, MM-creatine kinase. This may explain why the creatine kinase flux becomes practically independent from the workload in the hearts of transgenic mouse without MM-CK. Thus, the analysis of the results of studies of hearts of creatine kinase-deficient transgenic mice, based on the use of a mathematical model of compartmentalized energy transfer, show that in the PCr pathway of intracellular energy transport two isoenzymes of creatine kinase always function in a coordinated manner out of equilibrium, in the steady state, and disturbances in functioning of one of them inevitably result in the disturbances of the other component of the PCr pathway. In the latter case, energy is transferred from mitochondria to myofibrils by alternative metabolic pathways, probably involving adenylate kinase or other systems.  相似文献   

2.
The chloroplast and cytoplasmic isoenzymes of phosphoglycerate kinase (PGK) (EC. 2.7.2.3) from Hordeum vulgare leaves have been separated and purified for the first time to apparent homogeneity. The method for purifying the isoenzymes is described here and consists of DEAE Sephacel chromatography followed by affinity chromatography on ATP Sepharose. This consistently provided a 500- to 900-fold purification of each isoenzyme. Most of the total PGK in green barley leaves was found to be in the chloroplasts with only 10% in the cytoplasm. The immunological properties of the two isoenzymes were compared. The antisera raised to the separate isoenzymes showed cross-reactivity, although there is evidence that each isoenzyme possesses some distinct epitopes. The isoenzymes differ in overall charge with isoelectric points at 5.2 and 5.4 for the chloroplast and cytoplasmic isoenzymes, respectively. Molecular mass estimations by gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis provided similar values of approximately 38 kilodaltons for each isoenzyme, some 4 to 5 kilodaltons less than the values calculated from the cDNA sequences of the wheat isoenzymes. The isoenzymes have broadly similar pH optima of pH 7 to 8. The cytoplasmic isoenzyme is more thermally stable than the chloroplast isoenzyme. Further studies are now in progress to compare both the regulatory properties of the isoenzymes and also their three-dimensional structures as compared with the yeast enzyme.  相似文献   

3.
1. One mitochondrial and one cytoplasmic malate dehydrogenase isoenzyme could be purified from acetate grown cells of the yeast Saccharomyces cerevisiae. 2. The purification procedure uses chromatography on dextran blue columns as an essential step for enrichment, and reverse ammonium sulfate chromatography on celite for isoenzyme separation. 3. The homogeneity of the preparations was established by gel electrophoreses in the presence of sodium dodecylsulfate and by a sedimentation run in the analytical ultracentrifuge. 4. Both enzymes are dimers with a molecular weight of 75 000 for the cytoplasmic and of 68 000 for the mitochondrial enzyme. 5. Amino acid analysis and peptide mapping showed that both enzymes are closely related, but genetically different (true isoenzymes). 6. The cytoplasmic enzyme shows electrophoretic splitting. This is most likely due to post-translational deamination in vivo. 7. Antibodies to both isoenzymes could be obtained in rabbits. The antisera to cytoplasmic malate dehydrogenase were specific for this enzyme. Antisera to mitochondrial malate dehydrogenase react with both isoenzymes. Neither type of antisera precipitated an inactive protein after the glucose-dependent inactivation of cytoplasmic malate dehydrogenase in vivo.  相似文献   

4.
Adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) from the mantle muscle of the squid, Loligo pealeii, was purified over 170-fold to homogeneity as judged by polyacrylamide and starch gel electrophoresis. The tissue contains a single isozyme of adenylate kinase, the enzyme from cytoplasmic and mitochondrial compartments (90 and 10% of total activity, respectively) being identical in physical and kinetic properties. Molecular weight was found to be 27,000 +/- 400. The enzyme shows a pH optimum of 8.2 in the forward (APD utilizing) and 7.4 in the reverse direction. Michaelis constants for ADP, ATP, and AMP are 0.70, 0.13, and 0.15 mM, respectively, with optimal Mg2+:adenylate ratios being 1:2 for ADP and 1:1 for ATP. A comparison of mass action ratios with the equilibrium constant indicated that squid adenylate kinase is held out of equilibrium in resting, but not active, muscle. A search for metabolic modulators of adenylate kinase revealed that NADH (Ki of 0.1 mM) was the only modulator which exerted a significant effect within its in vivo concentration range. The data presented indicate that NADH inhibition is the factor maintaining adenylate kinase in a nonequilibrium state in resting muscle and that release of this inhibition can serve to integrate adenylate kinase into the known scheme of intermediary metabolism in this tissue. A sharp drop in NADH levels at the onset on muscular work co-ordinates that activation of aerobic metabolism in this tissue and allows adenylate kinase to return to equilibrium function. At equilibrium, the enzyme can function to ampligy the concentration of AMP, a potent activator and deinhibitor of key glycolytic and Krebs cycle enzymes. The effect of modulators of adenylate kinase in preventing denaturation by heat or proteolysis revealed that NADH and substrates induced conformational changes in the enzyme which rendered it less susceptible to denaturation. The conformation state induced by NADH differed from that induced by substrate.  相似文献   

5.
Two isoenzymes of ATP:D-fructose-6-phosphate 1-phosphotransferase(phosphofructokinase) are present in germinating cucumber seeds,one in the plastids and the other in the cytosol. Both isoenzymeswere purified and some of their kinetic properties studied.These two isoenzymes differ kinetically, the pH optimum of thecytosolic isoenzyme being 7.2 and that of the plastid isoenzymebeing 8.0. Both isoenzymes are activated by phosphate althoughthe concentration required for activation is much lower forthe plastid isoenzyme than cytosolic isoenzyme. Phosphate increasesthe affinity of the isoenzymes for fructose-6-phosphate andalso changes the sigmoidal kinetics of the plastid isoenzymefor this substrate to hyperbolic kinetics at pH 7.2. The fructose-6-phosphatesaturation kinetics of the cytosolic isoenzyme becomes moresigmoidal with an increase in pH while the opposite is truefor the plastid isoenzyme. The cytosolic isoenzyme has a higheraffinity for fructose-6-phosphate at pH 7.2 than pH 8.0 whilethe affinity of the plastid isoenzyme for fructose-6-phosphateis highest at pH 8.0. Both isoenzymes are inhibited by ATP andthe extent of inhibition is pH dependent. The cytosolic isoenzymeis more sensitive to ATP inhibition at pH 8.0 than pH 7.2 whilethe opposite holds for the plastid isoenzyme. Magnesium alleviatesthe ATP inhibition of the plastid isoenzyme suggesting thatfree ATP is the inhibitory form. In contrast the ATP inhibitionof the cytosolic isoenzyme apparently appears to be caused bythe magnesium-ATP complex. (Received May 19, 1987; Accepted January 18, 1988)  相似文献   

6.
The mathematical model of the compartmentalized energy transfer system in cardiac myocytes presented includes mitochondrial synthesis of ATP by ATP synthase, phosphocreatine production in the coupled mitochondrial creatine kinase reaction, the myofibrillar and cytoplasmic creatine kinase reactions, ATP utilization by actomyosin ATPase during the contraction cycle, and diffusional exchange of metabolites between different compartments. The model was used to calculate the changes in metabolite profiles during the cardiac cycle, metabolite and energy fluxes in different cellular compartments at high workload (corresponding to the rate of oxygen consumption of 46 mu atoms of O.(g wet mass)-1.min-1) under varying conditions of restricted ADP diffusion across mitochondrial outer membrane and creatine kinase isoenzyme "switchoff." In the complete system, restricted diffusion of ADP across the outer mitochondrial membrane stabilizes phosphocreatine production in cardiac mitochondria and increases the role of the phosphocreatine shuttle in energy transport and respiration regulation. Selective inhibition of myoplasmic or mitochondrial creatine kinase (modeling the experiments with transgenic animals) results in "takeover" of their function by another, active creatine kinase isoenzyme. This mathematical modeling also shows that assumption of the creatine kinase equilibrium in the cell may only be a very rough approximation to the reality at increased workload. The mathematical model developed can be used as a basis for further quantitative analyses of energy fluxes in the cell and their regulation, particularly by adding modules for adenylate kinase, the glycolytic system, and other reactions of energy metabolism of the cell.  相似文献   

7.
Distinct isoenzyme patterns of the glycogenolytic enzymes exist in different fibre types. Fast twitch glycolytic and slow twitch oxidative fibres differ in the proportion of the two isoenzymes of cyclic AMP dependent protein kinase and in the type of phosphorylase kinase that is present. Slow twitch oxidative fibres and cardiac fibres resemble one another in these two respects, but differ in that the type I phosphorylase of cardiac muscle is absent in slow twitch oxidative fibres. In all examples, the functional differences between the isoenzymes seem to be related to the regulatory rather than the catalytic behavior of the molecules. In the case of cyclic AMP dependent protein kinase and phosphorylase kinase, it is a regulatory subunit that appears to be affected [16,23], while in the case of phosphorylase, the type I isoenzyme is known to have a five to eight-fold Ka for the allosteric activator 5' AMP [6]. However, the precise physiological significance of these differences remains to be elucidated.  相似文献   

8.
The regulatory properties of phosphofructokinase from rat mucosa, liver, brain and muscle were investigated. Mucosal phosphofructokinase displayed cooperativity with respect to fructose 6-phosphate at pH 7.0 and so did the muscle, brain and liver isoenzymes. All these four isoenzymes were inhibited by ATP, the mucosal isoenzyme being the least inhibited. They were also inhibited by citrate and creatine phosphate. AMP, ADP, glucose 1,6-diphosphate, fructose 2,6-bisphosphate and inorganic phosphate were all strong activators for the mucosal, brain, liver and muscle phosphofructokinase, but the mucosal isoenzyme was found to be more activated than the others, accounting for the higher rates of glycolysis observed in mucosa. The results suggest that mucosal phosphofructokinase is unique and different from all the other isoenzymes.  相似文献   

9.
Two soluble NAD(+) kinase isoenzymes (isoenzymes 1 and 2) from Euglena gracilis were separated by preparative electrophoresis and characterized. They display several similar properties: both have an identical apparent molecular weight of 68 kDa and their activities are independent on calmodulin, insensitive to 2-mercaptoethanol but inhibited by p-chloromercurybenzoate, 5, 5'-dithiobis(2-nitrobenzoate) and, surprisingly, by low dithiothreitol concentrations, the inhibition by dithiothreitol being irreversible for isoenzyme 1 but reversible for isoenzyme 2. Nevertheless, the two isoenzymes mainly differ by their specificities towards triphosphate nucleotides and their catalytic mechanisms. Isoenzyme 1 is as active in the presence of ATP as of GTP and acts by a ping-pong mechanism with a k(M) for NAD(+) of 0.26 mM and a k(M) for low MgATP(2-)concentrations of 0.03 mM. Isoenzyme 2 is three-fold more active in the presence of GTP than of ATP and operates by a sequential mechanism with k(M)s for NAD(+) and MgGTP(2-) of 1.03 and 0.20 mM, respectively. This study shows the evidence for the existence of two structurally similar but catalytically different NAD(+) kinase isoenzymes in E. gracilis. One resembles the enzyme previously described in bacteria. The other displays a catalytic mechanism identical to that of NAD(+) kinase from other organisms but remains unique among all the NAD(+) kinases studied to-date regarding its specificity towards GTP.  相似文献   

10.
Conditions influencing the cyclic AMP-dependence of protein kinase (ATP-protein phosphotransferase, EC 2.7.1.37) during the phosphorylation of histone were studied. Protein kinase from mouse liver cytosol and the two isoenzymes [PK (protein kinase) I and PK II] isolated from the cytosol by DEAE-cellulose chromatography were tested. A relation between concentration of enzyme and cyclic AMP-dependence was observed for both isoenzymes. Moderate dilution of isoenzyme PK II decreased the stimulation of the enzyme by cyclic AMP. Isoenzyme PK I could be diluted 200 times more than isoenzyme PK II before the same decrease in cyclic AMP-dependence appeared. Long-term incubation with high concentrations of histone increased the activity in the absence of cyclic AMP relative to the activity in the presence of the nucleotide. This was more pronounced for isoenzyme PK II than for isoenzyme PK I. The cyclic AMP concentration needed to give half-maximal binding of the nucleotide was the same as the cyclic AMP concentration (Ka) at which the protein kinase had 50% of its maximal activity. The close correlation between binding and activation is also found in the presence of KCl, which increased the apparent activation constant (Ka) for cyclic AMP. With increasing [KCl], a progressively higher proportion of the histone phosphorylation observed in cytosol was due to cyclic AMP-independent (casein) kinases, leading to an overestimation of the degree of activation of the cyclic AMP-dependent protein kinases present. The relative contributions of cyclic AMP-dependent and -independent kinases to histone phosphorylation at different ionic strengths was determined by use of heat-stable inhibitor and phospho-cellulose chromatography.  相似文献   

11.
A bound form of creatine kinase associated with brain particulate was characterized by isoelectric focusing, antigenicity and chromatography and compared to muscle (MM), brain (BB), and heart mitochondrial isoenzymes. On partial purification and isoelectric focusing, the solubilized enzyme has a pl of 7.3, similar to the pl of muscle creatine kinase MM, pl 6.8, but different from brain creatine kinase BB, which precipitates on isoelectric focusing in sucrose or glycerol stabilized media at its calculated pl of 5.6. Gel filtration chromatography of deoxycholate solubilized particulate creatine kinase on Sephadex Gl50 reveals an estimated molecular weight of approximately 80,000 daltons. The brain particulate enzyme is antigenically distinct from both muscle and rat heart mitochondrial creatine kinase isoenzymes but has antigenic similarity with soluble cytoplasmic brain BB. The situation may be analogous to that found with rat heart mitochondria and rat heart cytoplasmic isoenzymes which we have shown to exhibit antigenic similarity even though differences in electrophoretic and amino acid composition have been demonstrated; however, the confident determination that the particulate enzyme is a separate isoenzyme will have to await amino acid analysis.  相似文献   

12.
1. A procedure for the purification of the cytoplasmic isoenzyme of aspartate aminotransferase from sheep liver is described. 2. The purified isoenzyme shows a single component in the ultracentrifuge at pH7.6 and forms a single protein band on agar-gel electrophoresis at pH6.3 or 8.6, as well as when stained for protein or activity after polyacrylamide-gel or cellulose acetate electrophoresis at pH8.8. 3. Immunoelectrophoresis on agar gel yields only one precipitin arc associated with the protein band, with rabbit antiserum to the purified isoenzyme. By immunodiffusion, cross-reaction was detected between the cytoplasmic isoenzymes from sheep liver and pig heart, but not between the cytoplasmic and mitochondrial sheep liver isoenzymes. 4. The s(20,w) of the enzyme is 5.69S and the molecular weight determined by sedimentation equilibrium is 88900; 19313 molecules of oxaloacetate were formed/min per molecule of enzyme at pH7.4 and 25 degrees C. 5. The amino acid composition of the isoenzyme is presented. It has about 790 residues per molecule. 6. The holoenzyme has a maximum of absorption at 362nm at pH7.6 and 25 degrees C. 7. A value of 2.1 was found for the coenzyme/enzyme molar ratio. 8. The purified enzyme revealed two bands of activity on polyacrylamide-gel electrophoresis at pH7.4 and an extra, faster, band in some circumstances. These bands occurred even when dithiothreitol was present throughout the isolation procedure. 9. Three main bands were obtained by electrofocusing on polyacrylamide plates with pI values 5.75, 5.56 and 5.35. 10. Structural similarities with cytoplasmic isoenzymes from other organs are discussed.  相似文献   

13.
Two isoenzymes of fructose-6-phosphate kinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) are present in Escherichia coli K12. One isoenzyme is allosterically inhibited by phosphoenolpyruvate and activated by nucleoside diphosphates, and is a tetramer composed of four subunits of molecular weight 35 000. A simple method for the purification of this enzyme is reported. Equilibrium dialysis indicates that there are four ATP sites and four GDP sites per tetramer. The second isoenzyme is present in low quantity in wild type bacteria. This enzyme is devoid of allosteric properties. A complete method of purification is described. Determination of its molecular weight under native and denaturing conditions indicates that this protein is a dimer composed of two subunits of molecular weight 36 000. Antisera have been produced against both isoenzymes. The antiserum against one isoenzyme does not cross-react with the other. Discrepancies between our results and those of other workers are discussed.  相似文献   

14.
Creatine kinase (CK) exists as a family of isoenzymes in excitable tissue. We studied isolated perfused hearts from mice lacking genes for either the main muscle isoform of CK (M-CK) or both M-CK and the main mitochondrial isoform (Mt-CK) to determine 1) the biological significance of CK isoenzyme shifts, 2) the necessity of maintaining a high CK reaction rate, and 3) the role of CK isoenzymes in establishing the thermodynamics of ATP hydrolysis. (31)P NMR was used to measure [ATP], [PCr], [P(i)], [ADP], pH, as well as the unidirectional reaction rate of PCr--> [gamma-P]ATP. Developmental changes in the main fetal isoform of CK (BB-CK) were unaffected by loss of other CK isoenzymes. In hearts lacking both M- and Mt-CK, the rate of ATP synthesis from PCr was only 9% of the rate of ATP synthesis from oxidative phosphorylation demonstrating a lack of any high energy phosphate shuttle. We also found that the intrinsic activities of the BB-CK and the MM-CK isoenzymes were equivalent. Finally, combined loss of M- and Mt-CK (but not loss of only M-CK) prevented the amount of free energy released from ATP hydrolysis from increasing when pyruvate was provided as a substrate for oxidative phosphorylation.  相似文献   

15.
The addition of oligomycin in the presence of Ca2+ increased the ADP pool in mitochondrial suspension. It is suggested that oligomycin inhibition of Ca2+-induced mitochondrial respiratory activation is the function of the increased endogenous ADP pool. Low ADP concentrations (5–20 μM) produce the same inhibitory effect as oligomycin. The increase of ADP levels in the presence of glucose plus hexokinase resulted in the inhibition of Ca2+-induced respiration, while the addition of phosphoenol pyruvate plus pyruvate kinase followed by a reduction in ADP levels, reversed the oligomycin inhibitory effect. One of the essential stages of ADP accumulation in mitochondrial suspensions in the presence of oligomycin and Ca2+ is proposed to be the formation of ADP from AMP and ATP, effected by adenylate kinase.  相似文献   

16.
Two distinct glutamate dehydrogenases are present in amoebae of the cellular slime mold Dictyostelium discoideum. One enzyme has been extracted from a crude mitochondrial fraction, and the other from an extramitochondrial cytoplasmic fraction. Both enzymes have been partially purified and characterized. The mitochondrial enzyme can utilize both NAD+ and NADP+ as coenzyme, while the extramitochondrial is NAD+ specific. When the mitondrial enzyme is assayed in the presence of either a rate-limiting or saturating concentration of glutamate, its activity is stimulated by both AMP and ADP and is inhibited by ATP. When the extramitochondrial enzyme is assayed in the presence of a rate-limiting concentration of glutamate, its activity is sensitive to modulation by a number of intermediates in carbohydrate metabolism and is inhibited by ADP, ATP, GTP, and CTP.  相似文献   

17.
Nitric oxide biosynthesis in cardiac muscle leads to a decreased oxygen consumption and lower ATP synthesis. It is suggested that this effect of nitric oxide is mainly due to the inhibition of the mitochondrial respiratory chain enzyme, cytochrome c oxidase. However, this work demonstrates that nitric oxide is able to inhibit soluble mitochondrial creatine kinase (CK), mitochondrial CK bound in purified mitochondria, CK in situ in skinned fibres as well as the functional activity of mitochondrial CK in situ in skinned fibres. Since mitochondrial isoenzyme is functionally coupled to oxidative phosphorylation, its inhibition also leads to decreased sensitivity of mitochondrial respiration to ADP and thus decreases ATP synthesis and oxygen consumption under physiological ADP concentrations.  相似文献   

18.
Adenylate kinase isoenzymes localised in the mitochondria and in the cytosol have been detected in extracts of glucose-grown Aspergillus nidulans using specific staining after electrophoresis on cellulose acetate. The isoenzymes have similar Km values for AMP, ADP and MgATP2- but may differ in the mechanism used for internucleotide phosphate transfer.  相似文献   

19.
The properties of adenylate kinase in 2 ADP in equilibrium ATP + AMP reaction have been studied. The dependence of the enzyme activity on medium pH, protein concentration, substrates, Mg++ ions, AMP, adenine and adenosine has been also investigated. pH optimum is found to be 8.5 for forward reaction and 8-9--for the reverse one. The Michaelis constants are as follows: for ADP--1.17-10(-4) M, for ATP--3.33-10(-4) M at 24 degrees C, in 50 mM tris-HCl pH 7.6. The optimal ratio, Mg++ ions/substrates (ADP, ATP + AMP), is 1:2. The chelates of adenine nucleotides with Mg++ ions are proved to be "true" reaction substrates. Unlike adenine and adenosine, the product of AMP reaction inhibits adenylate kinase activity. It is concluded that the properties of adenylate kinase in plants are similar to those of animals and humans (moikinase).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号