首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The budding process of the yeast form of Mucor rouxii was examined by electron microscopy of thin sections with particular reference to wall ontogeny. In most instances the bud wall is seen as a continuation of the inner layers of the parent cell wall. As the bud emerges it ruptures the outer layers of the parent wall. The bud wall is much thinner than the parent wall and remains so while the bud grows into a sphere of about one half the diameter of the parent cell. Then a septum begins to form centripetally, at the neck, by invagination of the plasmalemma. Before the neck canal is completely occuluded, electron-dense wall material is deposited into the septum space. Two separate septum walls are deposited, one on the parent side and one on the bud side of the invaginating plasmalemma. Septum wall formation extends to the surrounding neck walls. In this manner, the parent and bud cytoplasms become fully separated and each is surrounded by a continuous wall. The two cells remain attached to each other by the original neck wall; eventually, the bud abscisses leaving a birth scar on the bud cell and a more pronounced bud scar on the parent cell. In general, the mechanism of budding in this zygomycetous fungus resembles that of an ordinary ascomycetous yeast such as Saccharomyces cerevisiae.  相似文献   

2.
Summary The first stage in the formation of a bud in Rhodotorula glutinis is the production of a tapered plate of new wall material between the existing wall and the plasmalemma. The parent cell wall is lysed, allowing the bud to emerge enveloped in this new wall. Mucilage is synthesised to surround the developing bud. As the bud grows a septum forms centripetally dividing the two cells. When the daughter cell reaches maximum size the septum cleaves along its axis, producing the bud scar on the parent cell and the birth scar on the daughter cell. The birth scar is obliterated later as the wall of the young cell grows. A system of endoplasmic reticulum and vesicles is found in young buds and is thought to be responsible for the transport of wall material precursors.  相似文献   

3.
Bud formation in yeasts with bipolar budding was studied by electron microscopy of thin sections.Budding in yeasts of the speciesSaccharomycodes ludwigii, Hanseniaspora valbyensis andWickerhamia fluorescens resulted in concentric rings of scar ridges on the wall of the mother cell. The wall between the ridges consisted of the scar plug left by the former budding and opened up in the formation of the next bud. The wall of the bud arose from under the wall of the mother cell.In the yeasts of the speciesNadsonia elongata more than one bud might be formed from the same plug.InSchizoblastosporion starkeyi-henricii the scar ridges were close together and apparently not separated by the entire plug.In all species a cross wall was formed between mother cell and bud which consisted of an electron-light layer between two layers of more electron-dense material. The cells separated along the light layer.The authors wish to thank Dr J. A. Barnett for corrections of the English text, and Mr J. Cappon for drawing Fig. 1.  相似文献   

4.
In Saccharomyces cerevisiae, the bud site selection of diploid cells is regulated by at least four persistent landmarks, Bud8p, Bud9p, Rax1p, and Rax2p. Bud8p and Bud9p are essential for the establishment of bipolar budding and localize mainly to the distal and the proximal poles, respectively. Their subcellular localizations are regulated through interaction with Rax1p/Rax2p. We investigated when and where Bud8p and Bud9p physically interact with Rax2p in vivo using a split-GFP method. GFP fluorescence showed that Bud8p physically interacted with Rax2p at the proximal or distal pole in unbudded cells; a physical interaction was also observed at the opposite pole to the growing bud in mother cells with a large-size bud. Bud9p physically interacted with Rax2p at the birth scar in budded mother cells. These observations suggest that the interaction of Rax2p with Bud8p and Bud9p may contribute to the translocation of bipolar landmarks to the correct sites.  相似文献   

5.
The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4''s function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3.  相似文献   

6.
Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.  相似文献   

7.
8.
9.
Summary Examination of sectioned cells fixed in KMnO4 has shown that the wall of the first bud of a cell of Saccharomycodes ludwigii arises as an extension of the main wall of the parent, while in subsequent buds it develops by extension of the half-septum remaining at a previous detachment scar. Septa are formed by the deposition of wall material on each side of an electron transparent plate which develops centripetally. Structural changes occur in the marginal region of the septum prior to rupture of the main wall and the separation of cells at the surface of the septum-plate. The broken walls remain as annular rings around the scars following the successive development of buds at both apices of the cell.In Saccharomyces cerevisiae the bud wall arises as a direct extension of the parent wall or as an extension of an additional inner layer developed locally.The two types of bud origin are compared in the two yeasts and a comparison is also made with the development of buds, fission cells, conidia and germ tubes in other organisms.  相似文献   

10.
Boundary formation is an important mechanism of development and has been studied in a number of bilaterian model organisms where it is often controlled by Notch, FGF and Wnt signalling. Tissue boundaries are also formed in simple pre-bilaterian animals. The boundary between parent and bud during asexual reproduction in the fresh water polyp Hydra vulgaris is an example. The Hydra homolog of the FGF-receptor FGFR (kringelchen) and some components of the Wnt signalling pathway are expressed at this boundary, but their precise functions are unknown. In this work we have discovered an important role for Notch signalling at this boundary. Notch signalling is needed to sharpen the kringelchen expression zone during the final budding stages from an initially broad band into a clear line demarcating the boundary between bud and parent. Expression of the Notch target gene HyHes and the putative matrix metalloprotease MMP-A3 was observed at the boundary shortly before the bud began to constrict and differentiate foot cells. When Notch signalling was inhibited with the presenilin inhibitor DAPT the expression pattern for kringelchen changed dramatically into a diffused pattern. The expression of both HyHes and MMP-A3 was abolished. Moreover, morphogenesis of the bud was not completed and buds did not constrict, failed to form a foot and never detached from the parent. This resulted in the formation of two-headed animals. We suggest that the function of Notch signalling during budding in Hydra is in promoting the formation of two stripes of differing gene expression, which are needed to differentiate the foot of the bud and a progressing narrowing of the mesoglea on the side of the parent.  相似文献   

11.
The legitimacy of the name Cryptococcus mollis for the type of the genus Cryptococcus is shown. The type material, available in the Rijksherbarium at Leiden University was investigated by transmission electron microscopy. The cell wall of most of the cells showed a structure, similar to that of basidiomycetous yeasts. Bud scars were also found.  相似文献   

12.
The yeast cell contains a nucleus whose rigid centrosome carries a band of Feulgen-positive chromatin (centrochromatin) on its surface. The first step in budding is the formation of the bud by an extension of the centrosome over which the cell wall persists. Next the nuclear vacuole extends a process into the bud which contains the chromosomes. Finally the centrochromatin divides directly and the cells separate; a plug either of centrosome or cytoplasm sealing the bud pore. The cytoplasm, the centrosome, the centrochromatin and the nuclear wall are autonomous non genic organelles which never originate de novo.Copulation is the reverse of budding. The centrosomes fuse first; the cytoplasms mix; the nuclear vacuoles fuse by processes which travel along the fused centrosomes; and finally the centrochromatins fuse to form a single band.Figures 1–12. Drawings of budding yeast cells fixed in Schaudinn's fluid and stained with iron alum hemotoxylin, mounted in balsam. The cell wall is not visible due to the clearing action of the balsam. Except for Figure 5, the chromosomes and the nucleolus in the nuclear vacuole have been completely destained. The bud scar described by Barton is shown clearly at the end of the cell distal from the centrosome. The nuclear vacuole is usually forced into the extrusion formed by the bud scar. Since the cell wall is not visible, the plug of material connecting bud and mother cell as shown in Figure 12, fits into the cell wall and probably corresponds to the plug in the bud scar described by Barton. The details of the budding process are described in the text.Figures 13–18. Copulating yeast cells stained with Barrett's hemotoxylin and aceto-orcein and mounted in the stain. Chromosomes are visible in the nuclear vacuoles. The centrosome is usually visible and often appears to have a core which stains differentially. Except in Figure 16, the centrochromatin is visible as darkly stained material; in some cases surrounded by a clear zone. The “thick waisted” form of the cells identifies them as derived from recent copulations and distinguishes them from budding cells. The process of copulation is discussed in the text.  相似文献   

13.
The bipolar budding pattern of a/alpha Saccharomyces cerevisiae cells appears to depend on persistent spatial markers in the cell cortex at the two poles of the cell. Previous analysis of mutants with specific defects in bipolar budding identified BUD8 and BUD9 as potentially encoding components of the markers at the poles distal and proximal to the birth scar, respectively. Further genetic analysis reported here supports this hypothesis. Mutants deleted for BUD8 or BUD9 grow normally but bud exclusively from the proximal and distal poles, respectively, and the double-mutant phenotype suggests that the bipolar budding pathway has been totally disabled. Moreover, overexpression of these genes can cause either an increased bias for budding at the distal (BUD8) or proximal (BUD9) pole or a randomization of bud position, depending on the level of expression. The structures and localizations of Bud8p and Bud9p are also consistent with their postulated roles as cortical markers. Both proteins appear to be integral membrane proteins of the plasma membrane, and they have very similar overall structures, with long N-terminal domains that are both N- and O-glycosylated followed by a pair of putative transmembrane domains surrounding a short hydrophilic domain that is presumably cytoplasmic. The putative transmembrane and cytoplasmic domains of the two proteins are very similar in sequence. When Bud8p and Bud9p were localized by immunofluorescence and tagging with GFP, each protein was found predominantly in the expected location, with Bud8p at presumptive bud sites, bud tips, and the distal poles of daughter cells and Bud9p at the necks of large-budded cells and the proximal poles of daughter cells. Bud8p localized approximately normally in several mutants in which daughter cells are competent to form their first buds at the distal pole, but it was not detected in a bni1 mutant, in which such distal-pole budding is lost. Surprisingly, Bud8p localization to the presumptive bud site and bud tip also depends on actin but is independent of the septins.  相似文献   

14.
Cell division in log-phase cultures of the unicellular, biflagellate alga, Chlamydomonas reinhardi, has been studied with the electron microscope. The two basal bodies of the cell replicate prior to cytokinesis; stages in basal body formation are presented. At the time of cell division, the original basal bodies detach from the flagella, and the four basal bodies appear to be involved in the orientation of the plane of the cleavage furrow. Four sets of microtubules participate in cell division. Spindle microtubules are involved in a mitosis that is marked by the presence of an intact nuclear envelope. A band of microtubules arcs over the mitotic nucleus, indicating the future cleavage plane. A third set of microtubules appears between the daughter nuclei at telophase, and microtubules comprising the "cleavage apparatus" radiate from the basal bodies and extend along both sides of the cleavage furrow during cytokinesis. Features of cell division in C. reinhardi are discussed and related to cell division in other organisms. It is proposed that microtubules participate in the formation of the cleavage furrow in C. reinhardi.  相似文献   

15.
D. S. Domozych 《Protoplasma》1987,136(2-3):170-182
Summary Phycoplast-mediated cytokinesis in the primitive green algal flagellate,Carteria crucifera, has been examined by electron microscopy. The key developmental foci during cell division are mobile centriole-MTOCs which control mitotic spindle formation, the establishment of the plane of cytokinesis, the initiation of the cytokinetic furrow, the formation of the phycoplast and the formation of morphogenetic microtubular arrays. The cytokinetic cleavage mechanism entails an ingressive furrowing closely associated with a prolific network of internuclear endoplasmic reticulum. Dictyosome activity is limited to the cleavage initiation zone and is responsible for the production of wall precursor-containing vesicles. Dictyosome materials do not contribute directly to the growing furrow edge. Potassium antimonate staining patterns reveal the cytokinetic ER as a storage/control site for calcium during cytokinesis. Discussion of possible models concerning this cytokinetic mechanism is presented.  相似文献   

16.
Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.  相似文献   

17.
Septum formation is initiated in Candida albicans by an electron transparent primary septum, which is then thickened on both sides to form secondary septa. Primary and secondary septa are incorporated into the bud scar, and secondary septum material only is incorporated into the birth scar.  相似文献   

18.
The septins are a family of proteins required for cytokinesis in a number of eukaryotic cell types. In budding yeast, these proteins are thought to be the structural components of a filament system present at the mother–bud neck, called the neck filaments. In this study, we report the isolation of a protein complex containing the yeast septins Cdc3p, Cdc10p, Cdc11p, and Cdc12p that is capable of forming long filaments in vitro. To investigate the relationship between these filaments and the neck filaments, we purified septin complexes from cells deleted for CDC10 or CDC11. These complexes were not capable of the polymerization exhibited by wild-type preparations, and analysis of the neck region by electron microscopy revealed that the cdc10Δ and cdc11Δ cells did not contain detectable neck filaments. These results strengthen the hypothesis that the septins are the major structural components of the neck filaments. Surprisingly, we found that septin dependent processes like cytokinesis and the localization of Bud4p to the neck still occurred in cdc10Δ cells. This suggests that the septins may be able to function in the absence of normal polymerization and the formation of a higher order filament structure.  相似文献   

19.
Bud scar analysis integrated with mathematical analysis of DNA and protein distributions obtained by flow microfluorometry have been used to analyze the cell cycle of the budding yeast Saccharomyces cerevisiae. In populations of this yeast growing exponentially in batch at 30 degrees C on different carbon and nitrogen sources with duplication times between 75 and 314 min, the budded period is always shorter (approximately 5 to 10 min) than the sum of the S + G2 + M + G1* phases (determined by the Fried analysis of DNA distributions), and parent cells always show a prereplicative unbudded period. The analysis of protein distributions obtained by flow microfluorometry indicates that the protein level per cell required for bud emergence increases at each new generation of parent cells, as observed previously for cell volume. A wide heterogeneity of cell populations derives from this pattern of budding, since older (and less frequent) parent cells have shorter generation times and produce larger (and with shorter cycle times) daughter cells. A possible molecular mechanism for the observed increase with genealogical age of the critical protein level required for bud emergence is discussed.  相似文献   

20.
Shoot branching is essential in ornamental chrysanthemum production and determines final plant shape and quality. Auxin is associated with apical dominance to indirectly inhibit bud outgrowth. Two non-mutually exclusive models exist for indirect auxin inhibition. Basipetal auxin transport inhibits axillary bud outgrowth by limiting auxin export from buds to stem (canalization model) or by increasing strigolactone levels (second messenger model). Here we analyzed bud outgrowth in treatments with auxin (IAA), strigolactone (GR24) and auxin transport inhibitor (NPA) using a split-plate bioassay with isolated chrysanthemum stem segments. Besides measuring bud length, dividing cell percentage was measured with flow cytometry and RT-qPCR was used to monitor expression levels of genes involved in auxin transport (CmPIN1) and signaling (CmAXR2), bud dormancy (CmBRC1, CmDRM1) and strigolactone biosynthesis (CmMAX1, CmMAX3). Treatments over a 5-day period showed bud outgrowth in the control and inhibition with IAA and IAA?+?GR24. Bud outgrowth in the control coincided with high dividing cell percentage, decreased expression of CmBRC1 and CmDRM1 and increased CmPIN1 expression. Inhibition by IAA and IAA?+?GR24 coincided with low dividing cell percentage and unchanged or increased expressions of CmBRC1, CmDRM1 and CmPIN1. Treatment with GR24 showed restricted bud outgrowth that was counteracted by NPA. This restricted bud outgrowth was still concomitant with a high dividing cell percentage and coincided with decreased expression of dormancy genes. These results indicate incomplete inhibition of bud outgrowth by GR24 treatment and suggest involvement of auxin transport in the mechanism of bud inhibition by strigolactones, supporting the canalization model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号