首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Potential of embryonic and adult stem cells in vitro   总被引:3,自引:0,他引:3  
Recent developments in the field of stem cell research indicate their enormous potential as a source of tissue for regenerative therapies. The success of such applications will depend on the precise properties and potentials of stem cells isolated either from embryonic, fetal or adult tissues. Embryonic stem cells established from the inner cell mass of early mouse embryos are characterized by nearly unlimited proliferation, and the capacity to differentiate into derivatives of essentially all lineages. The recent isolation and culture of human embryonic stem cell lines presents new opportunities for reconstructive medicine. However, important problems remain; first, the derivation of human embryonic stem cells from in vitro fertilized blastocysts creates ethical problems, and second, the current techniques for the directed differentiation into somatic cell populations yield impure products with tumorigenic potential. Recent studies have also suggested an unexpectedly wide developmental potential of adult tissue-specific stem cells. Here too, many questions remain concerning the nature and status of adult stem cells both in vivo and in vitro and their proliferation and differentiation/transdifferentiation capacity. This review focuses on those issues of embryonic and adult stem cell biology most relevant to their in vitro propagation and differentiation. Questions and problems related to the use of human embryonic and adult stem cells in tissue regeneration and transplantation are discussed.  相似文献   

2.
How limited is the ability of stem cells to generate gametes or differentiated somatic cells? Recent outcomes of research with stem cells from both embryonic and adult origin will be discussed with particular attention to results that challenge conventional wisdom about the presence of reproductive stem cells in adults and the plasticity of adult stem cell types. The ability of embryonic germ cells, primordial germ cells, oogonia, gonocytes and spermatogonial stem cells to differentiate or dedifferentiate into overlapping cell types is described as well as the implications of generating differentiated somatic cells of multiple lineages from adult reproductive stem cells.  相似文献   

3.
Stemness,fusion and renewal of hematopoietic and embryonic stem cells   总被引:7,自引:0,他引:7  
Development of replacement cell therapies awaits the identification of factors that regulate nuclear reprogramming and the mechanisms that control stem cell renewal and differentiation. Once such factors and signals will begin to be elucidated, new technologies will have to be envisaged where uniform differentiation of adult or embryonic stem cells along one differentiation pathway can be induced. Controlled differentiation of stem cells will require the engineering of niches and extracellular signal combinations that would amplify a particular signaling network and allow uniform and selective differentiation. Three recent advances in stem cell research open the possibility to approach engineering studies for cell replacement therapies. Fusion events between stem cells and adult cells or between adult and embryonic stem cells have been shown to result in altered fates and nuclear reprogramming of cell hybrids. Hematopoietic stem cells were shown to require Wnt signaling in order to renew. The purification of Wnt proteins would allow their use as exogenous purified cytokines in attempts to amplify stem cells before bone marrow transplantation. The homeodomain protein Nanog has been shown to be crucial for the embryonic stem cell renewal and pluripotency. However, the cardinal question of how stemness is preserved in the early embryo and adult stem cells remains opened.  相似文献   

4.
Stem cell: balancing aging and cancer   总被引:5,自引:0,他引:5  
Stem cells are defined by their self-renewing capacity and the ability to differentiate into one or more cell types. Stem cells can be divided, depending on their origin, into embryonic or adult. Embryonic stem cells derive from early stage embryos and can give rise to cells from all three germ layers. Adult stem cells, first identified in hematopoietic tissue, reside in a variety of adult tissues. Under normal physiologic conditions, adult stem cells are capable of differentiating into the limited cell types that comprise the particular tissue or organ. Adult stem cells are responsible for tissue renewal and exhaustion of their replicative capacity may contribute to tissue aging. Loss of unlimited proliferative capacity in some of the adult stem cells and/or their progenitors may have involved the evolutionary trade-off: senescence prevents cancer but may promote aging. Embryonic stem cells exhibit unlimited self-renewal capacity due to the expression of telomerase. Although they possess some cancer cell characteristics, embryonic stem cells exhibit a remarkable resistance to genomic instability and malignant transformation. Understanding the tumor suppressive mechanisms employed by embryonic stem cells may contribute to the development of novel cancer treatments and safe cell-based therapies for age-related diseases.  相似文献   

5.
Abstract.  Misinformation erodes the legitimacy of any public debate. Since the start of human embryonic stem cell research deliberations in the USA, misinformation concerning the nature of human embryos, their availability for research, and the potential for using them to develop new medical therapies have been widespread and persistent. Basic facts, well understood by physicians and biologists, have been so misstated and misrepresented in the news media and political speeches that the general public has been put in a state of constant uncertainty. The solution to the present troubling condition is better education in the form of diligent, honest, and complete scientific disclosure by responsible scientists and physicians; and more care given to accurate reporting by news media. Several key aspects of newly emerging embryonic and non-embryonic stem cell technologies are defined and discussed as they relate to the debate over the use of human embryos for medical research. An important topic for consideration is how to disclose with clarity the scientific basis for human embryonic life. Thereafter, failings in proposed technologies for developing new therapies with human embryonic stem cells, that have been grossly under-reported, are examined. Finally, properties of adult stem cells are presented in contradistinction to embryonic stem cells, both in terms of adult stem cells as a scientifically better alternative to embryonic stem cells and in terms of the technological challenges that must be overcome to realize the potential of adult stem cells for new medical therapies.  相似文献   

6.
Beta-cell replacement therapy via islet transplantation has received renewed interest due to the recent improved success. In order to make such a therapy available to more than a few of the thousands of patients with diabetes, new sources of insulin-producing cells must be readily available. The most promising sources are stem cells, with efforts of deriving new beta-cells from both embryonic and adult stem cells. Several groups have reported generating insulin-producing cells from mouse embryonic stem cells. The strategies in the first two acclaimed reports were very different. One strategy, used by Soria's group, is gene trapping in which an introduced antibiotic resistance under the control of the insulin promoter allowed the selection of insulin-expressing cells that had spontaneously differentiated within embryoid bodies. Another strategy, used by McKay's group, manipulated culture conditions in a multistep protocol used for generating neural cells but with changed final conditions. Since these reports, there have been modifications of the protocols in efforts to improve the yields and maturity of the resulting cells. While it is unclear if the insulin-producing cells in any of these studies are truly mature beta-cells, these studies show the clear potential of embryonic stem cells and support optimism that similar results will be possible with human embryonic stem cells. We know that new beta-cells are generated throughout adult life, but the identity of adult pancreatic stem cells has been elusive. The potential for expansion and differentiation of pluripotent adult stem cells, whether from bone marrow or as non-pancreas tissue resident SP cells, is being explored but has not yet yielded insulin-producing tissue. In contrast, insulin-producing cells have been generated in vitro from adult pancreatic tissues. We have been examining the hypothesis that the functional source for new beta-cells in the adult pancreas are mature duct epithelial cells that have regressed or lost their mature phenotype after replication. Others have isolated putative stem cells from islets and ducts. For adult cells the issue of expansion as well as of differentiation is a question. The field of generating new beta-cells from stem cells, either embryonic or adult, is still in its infancy. Each new report has been met with a mixture of excitement and skepticism. With continued efforts and rigorous assessments, hopefully the potential of generating enough new beta-cells from stem cells will be realized.  相似文献   

7.
Cell differentiation lineage in the prostate   总被引:12,自引:0,他引:12  
Prostatic epithelium consists mainly of luminal and basal cells, which are presumed to differentiate from common progenitor/stem cells. We hypothesize that progenitor/stem cells are highly concentrated in the embryonic urogenital sinus epithelium from which prostatic epithelial buds develop. We further hypothesize that these epithelial progenitor/stem cells are also present within the basal compartment of adult prostatic epithelium and that the spectrum of differentiation markers of embryonic and adult progenitor/stem cells will be similar. The present study demonstrates that the majority of cells in embryonic urogenital sinus epithelium and developing prostatic epithelium (rat, mouse, and human) co-expressed luminal cytokeratins 8 and 18 (CK8, CK18), the basal cell cytokeratins (CK14, CK5), p63, and the so-called transitional or intermediate cell markers, cytokeratin 19 (CK19) and glutathione-S-transferase-pi (GSTpi). The majority of luminal cells in adult rodent and human prostates only expressed luminal markers (CK8, CK18), while the basal epithelial cell compartment contained several distinct subpopulations. In the adult prostate, the predominant basal epithelial subpopulation expressed the classical basal cell markers (CK5, CK14, p63) as well as CK19 and GSTpi. However, a small fraction of adult prostatic basal epithelial cells co-expressed the full spectrum of basal and luminal epithelial cell markers (CK5, CK14, CK8, CK18, CK19, p63, GSTpi). This adult prostatic basal epithelial cell subpopulation, thus, exhibited a cell differentiation marker profile similar to that expressed in embryonic urogenital sinus epithelium. These rare adult prostatic basal epithelial cells are proposed to be the progenitor/stem cell population. Thus, we propose that at all stages (embryonic to adult) prostatic epithelial progenitor/stem cells maintain a differentiation marker profile similar to that of the original embryonic progenitor of the prostate, namely urogenital sinus epithelium. Adult progenitor/stem cells co-express both luminal cell, basal cell, and intermediate cell markers. These progenitor/stem cells differentiate into mature luminal cells by maintaining CK8 and CK18, and losing all other makers. Progenitor/stem cells also give rise to mature basal cells by maintaining CK5, CK14, p63, CK19, and GSTpi and losing K8 and K18. Thus, adult prostate basal and luminal cells are proposed to be derived from a common pleuripotent progenitor/stem cell in the basal compartment that maintains its embryonic profile of differentiation markers from embryonic to adult stages.  相似文献   

8.
Cardiomyocyte differentiation from embryonic and adult stem cells   总被引:3,自引:0,他引:3  
In recent years multiple reports indicating that embryonic as well as adult stem cells can differentiate to cardiomyocytes have ignited discussions on whether these stem cells could lead to new therapies for patients with heart disease. Recent developments have been made in the generation of cardiomyocytes from both embryonic and adult stem cells, and progress towards clinical applications in patients with heart failure has been made. Nevertheless, controversies surrounding safety and transdifferentiation issues will need to be overcome before these stem cell approaches can reach their full potential.  相似文献   

9.
10.
Stem cells isolated from various sources have been shown to vary in their differentiation capacity or pluripotentiality. Two groups of stem cells, embryonic and adult stem cells, may be capable of differentiating into any desired tissue or cell type, which offers hope for the development of therapeutic applications for a large number of disorders. However, major limitations with the use of embryonic stem cells for human disease have led researchers to focus on adult stem cells as therapeutic agents. Investigators have begun to examine postnatal sources of pluripotent stem cells, such as bone marrow stroma or adipose tissue, as sources of mesenchymal stem cells. The following review focuses on recent research on the use of stem cells for the treatment of cardiovascular and pulmonary diseases and the future application of mesenchymal stem cells for the treatment of a variety of cardiovascular disorders.  相似文献   

11.
胚胎干细胞作为一种具有多潜能和高度自我更新能力的种子细胞,己被广泛地应用于医学研究领域。在体外培养条件下,胚胎干细胞可被诱导分化为三个胚层来源的组织细胞,故被看作为最具有应用前景的种子细胞。近年来,对于在体外培养条件下如何维持胚胎干细胞的多能性即使其较长时期的处于未分化状态成为研究热点,其中一些天然存在或人工合成的小分子物质可通过作用于某些特定的靶信号通路,调控胚胎干细胞的分化命运。本文概述了几种小分子物质的最新研究进展,并对小分子物质在成体多分化潜能胚胎样干细胞分化调控方面的应用前景进行评述。  相似文献   

12.
在成体的许多组织中发现了多能干细胞,这些干细胞可以进行自我复制,参与组织的正常修复。神经干细胞在体外能分化为神经元、星形胶质细胞和少突胶质细胞,并具有多向分化潜能。成体神经干细胞和胚胎干细胞都能分化成成体神经系统中的各种神经细胞。神经干细胞具有自我更新能力,因此神经干细胞可以应用于神经损伤或者神经疾病的修复。本文概述了神经干细胞体外分离培养的方法及其生长影响因子。  相似文献   

13.
Neural stem cells in the mammalian eye: types and regulation   总被引:6,自引:0,他引:6  
Neural stem cells/progenitors that give rise to neurons and glia have been identified in different regions of the brain, including the embryonic retina. Recently, such cells have been reported to be present, in a mitotically quiescent state, in the ciliary epithelium of the adult mammalian eye. The retinal and ciliary epithelium stem cells/progenitors appear to share similar signaling pathways that are emerging as important regulators of stem cells in general. Yet, they are different in certain respects, such as in the potential to self-renew. These two neural stem cell/progenitor populations not only will serve as models for investigating stem cell biology but also will help explain the relationships between embryonic and adult neural stem cells/progenitors.  相似文献   

14.
多能性干细胞是一类具有体外无限自我复制和分化为体内多种细胞类型能力的多潜能细胞,是研究基因功能、建立疾病模型和促进再生医学领域发展的一种重要工具。自1981年小鼠胚胎干细胞建立以来,科学家们已经先后成功地建立了灵长类、人、大鼠的胚胎干细胞和小鼠、大鼠的上胚层干细胞等。但是,目前研究表明,维持人、灵长类胚胎干细胞的多能性信号通路与维持小鼠、大鼠胚胎干细胞的截然不同,而与维持小鼠、大鼠上胚层干细胞的信号通路比较类似。因此,该文对目前研究较多的维持小鼠胚胎干细胞、人胚胎干细胞和小鼠上胚层干细胞的多能性信号通路进行了综述,希望能够对其它物种的多能性干细胞研究提供有益的借鉴。  相似文献   

15.
16.
17.
治疗内耳疾病的主要困难之一是找到耳蜗毛细胞或者螺旋神经元丢失所导致的听力损失的治疗方法。本文讨论使用干细胞替代感觉细胞丢失为目的的几个治疗策略。作者最近在成年内耳中发现了可以分化为毛细胞的干细胞,发现了胚胎干细胞可在体外转化为毛细胞并表达毛细胞标记物。在动物模型中,成年内耳干细胞、神经干细胞和胚胎干细胞来源的前体细胞可分化成为毛细胞和神经细胞。本文将讨论使用干细胞再生损伤毛细胞的不同方法,介绍几种可行的动物模型,并讨论发展基于干细胞的细胞替代疗法治疗内耳损伤中存在的困难。  相似文献   

18.
Three erythrocyte populations (E, EA, A) were characterized during normal chick development by presence on cells of the embryonic (E) or adult (A) antigen or both (EA). Embryonic and adult stem cells were grafted into irradiated animals in order to distinguish the respective influence of stem cell origin and physiological conditions in the production of antigens. Adult marrow stem cells produce A erythrocytes. Embryonic stem cells (from 6- or 11-day-old embryo yolk sac) give rise first to E, then to EA populations. These results confirm the existence of adult stem cells with their own properties. It was not possible to decide whether the E and EA populations arise from a unique embryonic stem cell or from the existence of two stem cell populations.  相似文献   

19.
The regulation of stem cell self-renewal must balance the regenerative needs of tissues that persist throughout life with the potential for cell overgrowth, transformation and cancer. Here, we attempt to deconstruct the relationship that exists between cell-cycle progression and the self-renewal versus commitment cell-fate decision in embryonic and adult stem cells. Recent genetic studies in mice have provided insights into the regulation of the cell cycle in stem cells, including its potential modulation by the stem cell niche. Although the dynamics of the embryonic and adult stem cell cycles are profoundly dissimilar, we suggest that shared principles underlie the governance of this important decision point in diverse stem cell types.  相似文献   

20.
Abstract.  Stem cell research is now a very broad field encompassing cells derived from all stages of life from the embryonic stem cells of the early blastocyst through to the adult stem cells of many tissues of the body. Adult stem cells from a variety of tissues are proving to be pluripotent and can differentiate into cell types different from the tissues from which they derive. Pre-clinical animal models indicate that adult stem cells do not cause tumours, not even, teratomas when transplanted. These properties, combined with the possibility of autologous transplantation, indicate significant advantages over embryonic stem cells in many proposed clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号