首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(L-lysine) (PLL) has excellent plasmid DNA (pDNA) condensation capacity. However, the relatively high cytotoxicity and low transfection efficiency limit its application as gene delivery vectors. Here, well-defined glycopolymers are synthesized by reversible addition fragmentation transfer polymerization and grafted onto PLL to improve the gene delivery performance. After glycopolymer modification, PLL shows reduced cytotoxicity. By regulating the glycopolymer length and amino group substitution degree, the glycopolymer modified PLL can condense pDNA with proper strength, protect the condensed pDNA from degradation and release them in time. Transfection with NIH3T3 and HepG2 cells shows that the glycopolymer modified PLL has improved transfection efficiencies. The low cytotoxicity, effective pDNA protection and enhanced transfection efficiencies indicate that glycopolymer modification would be an effective strategy to improve the polycation properties for gene delivery.  相似文献   

2.
Well-defined lactose-containing glycopolymer has been synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization with (4-cyanopentanoic acid)-4- dithiobenozoate (CAD) as chain transfer agent. The glycopolymer was introduced onto the exterior surfaces of the bovine serum albumin (BSA) imprinted polymer beads by grafting copolymerization with methyl methacrylate and ethylene glycol dimethacrylate. After alcoholysis, the hydrophilic lactose residues of glycopolymer will stretched on the surface of the MIP beads and then the hydrophilicity of the surface will be enhanced. Rebinding test shows that the glycopolymer hydrophilic modified BSA imprinted polymer presents higher performance selectivity than that of unmodified one, which means that the hydrophobic-hydrophilic balance of the imprinted polymer surface is in favor of the improvement of specific recognition property of the material.  相似文献   

3.
The physiological properties of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization were investigated in terms of the circulation lifetime in the blood and distribution in tissues. Hydrophilic polymers consisting mainly of poly(poly(ethylene glycol) methyl ether methacrylate) were grafted onto silica particles by surface-initiated atom transfer radical polymerization that was mediated by a copper complex to produce hairy hybrid particles. A series of hybrid particles was synthesized by varying the diameter of the silica core and the chain length of the polymer brush to examine the relationship between their physicochemical and physiological properties. The hybrid particles were injected intravenously into mice to investigate systematically their blood clearance and body distribution. It was revealed that the structural features of the hybrid particles significantly affected their in vivo pharmacokinetics. Some hybrid particles exhibited an excellently prolonged circulation lifetime in the blood with a half life of ~20 h. When such hybrid particles were injected intravenously into a tumor-bearing mouse, they preferentially accumulated in tumor tissue. The tumor-targeted delivery was optically visualized using hybrid particles grafted with fluorescence-labeled polymer brushes.  相似文献   

4.
Well-defined linear poly(acryloyl glucosamine) (PAGA) exhibiting molar masses ranging from 3 to 120 K and low polydispersities have been prepared via reversible addition-fragmentation chain transfer polymerization (RAFT) in aqueous solution without recourse to protecting group chemistry. The livingness of the process was further demonstrated by successfully chain-extending one of these polymers with N-isopropylacrylamide affording narrow dispersed thermosensitive diblocks. This strategy of polymerization was finally extended to the preparation of glycopolymer stars from Z designed non-water-soluble trifunctional RAFT agent. After the growth of very short blocks of poly(hydroxyethyl acrylate) ((-)DP(n)(branch) = 10), AGA was polymerized in aqueous solution in a controlled manner affording well-defined 3-arm glycopolymer stars.  相似文献   

5.
The synthesis of galactose-displaying core-shell nanospheres exhibiting both fluorescent and magnetic properties by grafting a glycocopolymer consisting of 6-O-methacryloylgalactopyranose (MAGal) and 4-(pyrenyl)butyl methacrylate (PyMA) onto magnetic silica particles via thiol-ene chemistry is reported. Magnetization measurements indicated that neither the encapsulation of the iron oxide particles into silica nor the grafting of the glycocopolymer chains had a significant influence on the superparamagnetic properties. This not only simplifies the purification of the particles but may facilitate the use of the particles in applications such as hyperthermia or magnetic resonance imaging (MRI). Furthermore, the hydrophilic glycopolymer shell provided solubility of the particles in aqueous medium and enabled the uptake of the particles into the cytoplasm and nucleus of lung cancer cells via carbohydrate-lectin recognition effects.  相似文献   

6.
The formation of inclusion complexes between polyethylene glycols (PEGs) bearing hydrophobic ends (naphtyl and phenyladamantyl) and β-cyclodextrin polymers (polyβ-CD) immobilized onto silica particles was studied by high-performance liquid chromatography (HPLC). It was shown that hydrophobic interactions were involved in the retention mechanism of these compounds, since retention volumes decreased when organic solvents were added to the mobile phase while it was the contrary in the presence of salts. Moreover, the association could be reversed by adding a competitor (hydroxypropylβ-cyclodextrin) to the mobile phase. A theoretical model permitted the evaluation of affinity constants of 1:1 complexes formed between the modified PEGs and the immobilized polyβ-CD which depended on the type of hydrophobic groups grafted to the PEG.  相似文献   

7.
Artemisinin is an effective antimalarial drug isolated from the herbal medicine Artemisia annua L. Molecular imprinting is a technique of preparing molecularly imprinted polymers (MIPs) which can specifically recognize the imprinted template molecules. In this work, silica gel were used as supporting matrix, and vinyltriethoxysilane (VTES) was grafted onto its surface. The preparation of MIPs for artemisinin was performed on the surfaces of the modified silica gel using artemisinin as the template, acrylamide (AM) and methacrylic acid (MAA) as the functional monomers, ethylene glycol dimethacrylate (EGDMA) as the cross-linker and 2,2'-azo-bis-isobutyronitrile (AIBN) as the initiator. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and pore size analysis were used to characterize the prepared MIPs. The adsorption kinetic curve, adsorption isotherm and selective adsorption were measured by static method. The adsorption reached equilibrium at about 10 h, while fast adsorption took place during the first 2-3 h. The maximum adsorption capacity has been found to be 37.13 mg/g according to calculation with Langmuir-Freundlich isotherm. The electivity coefficients of MIPs for artemisinin with respect to artemether and arteether were 2.88 and 3.38, respectively. The results showed that the MIPs possessed good specific adsorption capacity and selectivity for artemisinin.  相似文献   

8.
The grafting of tetraneopentylchromium(IV) onto the surface hydroxyls of silica has been investigated by varying both the method of deposition and the nature of the silica support. Reaction of the volatile organometallic with the silica surface in vacuo is compared with reaction in solution. A faster reaction but a lower ultimate Cr loading was obtained using the solution deposition technique. The reactions of the organometallic compound with Aerosil 200, a fumed silica often used to model catalyst supports, and Sylopol 952, a silica gel used as a carrier for chromium-based ethylene polymerization catalysts, are compared. After thermal pretreatment at 200 °C, grafting on both supports yields bis(neopentyl)chromium(IV) fragments regardless of the grafting method used, suggesting that a paired arrangement of the surface hydroxyl groups exists on both types of silicas. The higher Cr loading achieved on the silica gel is attributed to its higher surface area. Thermally-induced neopentane elimination from the grafted bis(neopentyl)chromium(IV) fragments occurs at the same rate and with the same stoichiometry for both Aerosil- and Sylopol-supported materials. Consequently, interactions of the grafted organometallic fragments with nearby siloxanes appear to be unimportant in the early stages of the transformation of bis(alkyl)chromium(IV) to the alkylidene.  相似文献   

9.
Octadecyl-bonded silica, commonly used for reverse-phase high-pressure liquid chromatography, was modified using surfactants bearing ionizable groups and the modified packing used in ion-exchange chromatography of proteins. The surfactants 2-(n-hexadecylheptaethoxy)acetic acid, 1-(n-hexadecyloctaethoxy)ethylene-diamine, and N-(n-hexadecyloctaethoxy)pyridinium were adsorbed onto test columns packed with octadecyl-bonded silica particles. The proteins lysozyme, bovine serum albumin, trypsin, horse serum cholinesterase, and bovine liver carboxylesterase were used to study the ion-exchange characteristics of the modified packings. The retention order of the proteins on the surfactant-modified stationary phases were as predicted by the isoelectric point of each protein. In addition, the interaction of enzymes with the packings did not result in significant loss of enzymatic activity. Surfactant removal was possible with the use of organic solvents and this allowed the octadecyl-bonded surface to be used again in the reverse-phase mode. During the course of the experiments, no degradation in the packing's performance was observed due to loss of adsorbed surfactant, even after over 85,000 column volumes of sodium chloride and Tris-HCl buffers were circulated through the column.  相似文献   

10.
A label-free multiplexed immunoassay strategy was proposed for the simultaneous detection of two tumor markers, carcinoembryonic antigen (CEA) and α-fetoprotein (AFP). Monoclonal antibody of CEA was co-immobilized with ferrocenecarboxylic acid (FCA) inside the channels of mesoporous silica (MPS) to prepare the label-free probe for CEA. Also, monoclonal antibody of AFP was co-immobilized with horseradish peroxidase (HRP) inside the channels of MPS to prepare the label-free probe for AFP by using o-phenylenediamine (OPD) and H(2)O(2) as the electrochemical substrates. Thus, the multianalyte immunosensor was constructed by coating the probes of CEA and AFP respectively onto the different areas of indium-tin oxide (ITO) electrode. When the immunosensor was incubated with sample antigens, CEA and AFP antigens were introduced into the mesopores of MPS after the immunoassay reaction. Because all of the Si-OH groups on the external surface of MPS were blocked with Si(CH(3))(3), the proteins and substrates were limited to be embedded on the internal pore walls. Therefore, the electric response transfer was confined inside the pore channels. The nonconductive immunoconjugates blocked the electron transfer and the peak responses changed on the corresponding surface respectively. Then, the simultaneous detection of CEA and AFP achieved. The linear ranges of CEA and AFP were 0.5-45ngmL(-1) and 1-90ngmL(-1) with the detection limits of 0.2ngmL(-1) and 0.5ngmL(-1) (S/N=3), respectively. The fabricated immunosensor shows appropriate sensitivity and offers an alternative to the multianalyte detection of antigens or other bioactive molecules.  相似文献   

11.
A rapid, high-yield method has been developed for the N-acylation of sphingosine-1-phosphocholine (SPC) to obtain a series of sphingomyelin (SM) derivatives bearing different reporter groups in the N-acyl chain. The procedure utilizes a fatty acid activated as the N-hydroxysuccinimide ester. A 1:1 molar mixture of the activated fatty acid and SPC is refluxed in 5% aqueous NaHCO3-ethanol 9:1 (v/v) for 2-3 hr. After acidification, the precipitated SM is purified by column chromatography over silica gel. This procedure offers significant advantages over those reported for the synthesis of well-defined SM: i) only the amino (not the hydroxyl) group is acylated; ii) only one equivalent of fatty acid is required; and iii) the time necessary for the reaction to go to completion is short. The transition temperature and enthalpy of each SM derivative has been measured by differential scanning calorimetry and compared to its unlabeled analog.  相似文献   

12.
A new and practical laboratory approach to synthesize mannose modified chitosan (Man-chitosan) was developed via reductive amination reaction. Chitosan and mannose were used as raw materials. The reaction condition was mild and controllable. The overall yield was 47-52%. Each reaction products and Man-chitosan were characterized by (1)H NMR, ESI-MS, FT-IR and TGA spectrum. FT-IR and (1)H NMR results showed that mannose conjugated to chitosan via an alkane chain bridge (CH(2)CH(2)). The degree of substitution was calculated by element analysis. TGA results indicated that mannose grafted to chitosan slightly decreased the thermal stability of chitosan in some extent. MTT assay indicated that Man-chitosan was low cytotoxicity against HepG-2 and SMMC-7721 cells.  相似文献   

13.
Adsorption onto solid supports has proven to be an easy and effective way to improve the mechanical and catalytic properties of lipases. Covalent binding of lipases onto the support surface enhances the active lifetime of the immobilized biocatalysts. Our study indicates that mesoporous silica gels grafted with various functions are ideal supports for both adsorptive and covalent binding for lipase B from Candida antarctica (CaLB). Adsorption of CaLB on phenyl-functionalized silica gels improved in particular its specific activity, whereas adsorption on aminoalkyl-modified silica gels enabling covalent binding with the proper reagents resulted in only moderate specific activity. In addition, adsorption on silica gels modified by mixtures of phenyl- and aminoalkyl silanes significantly increased the productivity of CaLB. Furthermore, CaLB adsorbed onto a phenyl/aminoalkyl-modified surface and then treated with glutardialdehyde (GDA) as cross-linking agent provided a biocatalyst of enhanced durability. Adsorbed and cross-linked CaLB was resistant to detergent washing that would otherwise physically deactivate adsorbed CaLB preparations. The catalytic properties of our best immobilized CaLB variants, including temperature-dependent behavior were compared between 0 and 70 °C with those of two commercial CaLB biocatalysts in the continuous-flow kinetic resolutions of racemic 1-phenylethanol rac-1a and 1-phenylethanamine rac-1b.  相似文献   

14.
Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodoseudomonas palustris were self-assembled on a gold electrode modified with self-assembled monolayers (SAMs) of the alkanethiols NH2(CH2)nSH, n = 2, 6, 8, 11; HOOC(CH2)7SH; and CH3(CH2)7SH, respectively. Adsorption of the LH1-RC complexes on the SAMs depended on the terminating group of the alkanethiols, where the adsoption increased in the following order for the terminating groups: amino groups > carboxylic acid groups > methyl groups. Further, the adsorption on a gold electrode modified with SAMs of NH2(CH2)nSH, n = 2, 6, 8, 11, depended on the methylene chain length, where the adsorption increased with increasing the methylene chain length. The presence of the well-known light-harvesting and reaction center peaks of the near infrared (NIR) absorption spectra of the LH1-RC complexes indicated that these complexes were only fully stable on the SAM gold electrodes modified with the amino group. In the case of modification with the carboxyl group, the complexes were partially stable, while in the presence of the terminal methyl group the complexes were extensively denatured. An efficient photocurrent response of these complexes on the SAMs of NH2(CH2)nSH, n = 2, 6, 8, 11, was observed upon illumination at 880 nm. The photocurrent depended on the methylene chain length (n), where the maximum photocurrent response was observed at n = 6, which corresponds to a distance between the amino terminal group in NH2(CH2)6SH and the gold surface of 1.0 nm.  相似文献   

15.
Chen A  Kozak D  Battersby BJ  Trau M 《Biofouling》2008,24(4):267-273
The use and advantage of flow cytometry as a particle-by-particle, low sampling volume, high-throughput screening technique for quantitatively examining the non-specific adsorption of proteins onto surfaces is presented. The adsorption of three proteins: bovine serum albumin (BSA), immunoglobulin gamma (IgG) and protein G, incubated at room temperature for 2 h onto organosilica particles modified with poly(ethylene glycol) (PEG) of increasing MW (2000, 3400, 6000, 10,000 and 20,000 g mol(-1)) and grafted amounts (0.14-1.4 mg m(-2)) was investigated as a model system. Each protein exhibited Langmuir-like, high affinity monolayer limited adsorption on unmodified particles with the proteins reaching surface saturation at 1.8, 4.0 and 2.5 mg m(-2) for BSA, IgG and protein G, respectively. Protein adsorption on PEG-modified surfaces was found to decrease with increasing amounts of grafted polymer. PEG grafting amounts >0.6 mg m(-2) effectively prevented the adsorption of the larger two proteins (BSA and IgG) while a PEG grafting amount >1.3 mg m(-2) was required to prevent the adsorption of the smaller protein G.  相似文献   

16.
Silica and paramagnetic silica microparticles are surface-modified by an antibacterial macromolecular coating. For this, a hydrophilic copolymer brush based on oligo(ethylene glycol) methacrylates is grown on the particle surface by surface-initiated ATRP. Then, Magainin-I, a natural antimicrobial peptide, is grafted onto the hydroxyl groups of the brush through a heterolinker. The grafting of the peptide is evidenced by fluorescence microscopy and X-ray photoelectron spectroscopy. Moreover, culturability and viability assays performed in the presence of the magainin-grafted particles prove their bactericidal properties. The rapid recovery of the bactericidal particles based on paramagnetic silica and suspended in solution is shown under magnetization. Such particles offer the advantage to treat efficiently various sensitive aqueous solutions while avoiding any dissemination of bactericidal substances in the environment. As a consequence, they are of a great interest for various applications in medical, cosmetic, or biomedical fields.  相似文献   

17.
Liu YL  Hsu CY  Su YH  Lai JY 《Biomacromolecules》2005,6(1):368-373
Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.  相似文献   

18.
Kim JW  Kim LU  Kim CK 《Biomacromolecules》2007,8(1):215-222
Nearly monodispersed silica nanoparticles having a controlled size from 5 to 450 nm were synthesized via a sol-gel process, and then the optimum conditions for the surface treatment of the synthesized silica nanoparticles with a silane coupling agent (i.e., 3-methacryloxypropyltrimethoxysilane (gamma-MPS)) were explored to produce dental composites exhibiting enhanced adhesion and dispersion of silica nanoparticles in the resin matrix. The particle size was increased by increasing amounts of the catalyst (NH4OH) and silica precursor (tetraethylorthosilicate, TEOS) and by decreasing the amount of water in the reaction mixtures regardless of solvents used for the synthesis. The particle size prepared by using ethanol as a solvent was significantly larger than that prepared by using methanol as a solvent when the composition of the reaction mixture was fixed. The nanosized particles in the 5-25 nm range were aggregated. The amount of grafted gamma-MPS on the surface of the synthesized silica nanoparticles was dependent on the composition of the reaction mixture when an excess amount of gamma-MPS was used. When surface treatment was performed at optimum conditions found here, the amount of the grafted gamma-MPS per unit surface area of the silica nanoparticles was nearly the same regardless of the particle size. Dispersion of the silica particles in the resin matrix and interfacial adhesion between silica particles and resin matrix were enhanced when surface treated silica nanoparticles were used for preparing dental nanocomposites.  相似文献   

19.
A novel potentiometric immunosensor for the detection of adrenal cortical hormones (ACH) has been developed by means of self-assembling immobilization of adrenal cortical hormone antibody (anti-ACH) on a gold electrode-modified gold nanoparticle (Au) and a thiol-containing sol–gel network. A cleaned gold electrode was first immersed in a (3-mercaptopropyl)-trimethoxysilane (MPS) sol–gel solution to assemble a silica sol–gel monolayer, then the silane units were polymerized into a 2D sol–gel network (2D network) by dipping into aqueous NaOH. The second silane layer was formed by immersion back into the MPS solution overnight, and then the gold nanoparticles (nanogold) were chemisorbed onto the thiol groups of the second silane layer. Finally, anti-ACH was adsorbed onto the surface of the gold nanoparticles. The modified process was characterized by electrochemical impedance spectroscopy (EIS). The detection is based on the change in the potentiometric response before and after the antigen–antibody reaction. Using nanogold and 3-MPS as substrates, potentiometric detection at room temperature resulted in a pseudolinear detection range of about 22–1,000 ng mL−1 with a detection limit of 5.2 ng mL−1. Subsequently, several serum samples obtained from medical students with different anxiety extents were analyzed comparing with the ELISA method, and the results demonstrated that the immunoassay meets the demands of psychological analyses.  相似文献   

20.
Li Y  Li Q  Li F  Zhang H  Jia L  Yu J  Fang Q  Cao A 《Biomacromolecules》2006,7(1):224-231
This study presents investigations on new approaches to novel biodegradable amphiphilic poly(L-lactide)-b-dendritic poly(L-lysine)s bearing well-defined structures. First, two new Boc-protected poly(L-lysine) dendron initiators G(2)OH 4 (generation = 2) and G(3)OH 6 (generation = 3) with hydroxyl end functional groups were efficiently derived from corresponding precursors 3 and 5 via methyl ester substitution with ethanolamine. Subsequently, two series of new diblock copolymers of poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s (S1-S2, S3-S4) were prepared in chloroform through ring-opening copolymerization of poly(L-lactide)s with a metal-free catalyst of organic 4-(dimethylamino) pyridine (DMAP) in the presence of a corresponding new poly(L-lysine) dendron initiator. Further, molecular structures of the prepared new dendron initiators as well as those of poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s bearing different dendron blocks and PLLA lengths were examined by means of nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), mass spectrometry (ESI-MS, MALDI-FTMS), and thermal gravimetric analysis (TGA). The results demonstrated successful formation of the synthetic precursors, functional dendron initiators, and new diblock copolymers. In addition, the very narrow molecular weight distributions (PDI = 1.10-1.14) of these poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s further indicated their well-defined molecular structures. After the efficient Boc-deprotection for the dendron amino groups with TFA/CH(2)Cl(2), new diblock poly(L-lactide)-b-dendritic poly(L-lysine)s bearing lipophilic PLLA and hydrophilic dendritic PLL were finally prepared. It was noteworthy that the MALDI-FTMS result showed that no appreciable intermolecular chain transesterification happened during the ROP of L-lactide catalyzed by the DMAP. Moreover, self-assembly of these new biodegradable amphiphilic copolymers in diverse solvents were also preliminarily studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号