首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 955 毫秒
1.
The tumor suppressor protein p53 is a phosphoprotein and has growth and transformation suppression functions. Phosphorylation of wild-type p53 is known to modulate its function. To investigate the role of phosphorylation in modulating the functions of mutant p53, we constructed a series of phosphorylation site mutants based on mutant p53 Ala143 (p53-143) and p53 His175 (p53-175). When transfected into p53-negative Saos-2 cells, parental mutant p53-143 and p53-175 abolished both growth suppression and induction of apoptosis. However, DNA-activated protein kinase (DNA-PK) or cyclin-dependent kinase (cdks) phosphorylation site double mutants partially restored the growth suppression and induction of apoptosis and recovered the p53-specific DNA binding activity. We also observed a difference in sensitivity to calpain from parental mutants p53-175 and p53-175/15 or p53-175/315. These results suggest that the lack of phosphorylation at either the DNA-PK or cdks site in p53 mutants partially restores the wild-type functions by altering their conformation.  相似文献   

2.
The growth suppressor protein p53 plays a main part in cellular growth control. Two of its key functions are sequence specific DNA binding and transactivation. Functions of p53 in growth control are regulated at least in part by its interaction with protein kinases. p53 binds to protein kinase CK2, formerly known as casein kinase 2, and it is phosphorylated by this enzyme. CK2 is composed of two regulating beta-subunits and two catalytic alpha- or alpha'-subunits and the interaction with p53 is mediated by the regulatory beta-subunit of CK2. Recently we showed that the beta-subunit could inhibit the sequence specific DNA binding activity of p53 in vitro. Based on this finding, we asked if a coexpression of the beta-subunit of CK2 with p53 in mammalian cells could inhibit the DNA binding activity of p53 in a physiological context. We found that the coexpression of the beta-subunit showed the same inhibitory effect as in the previous assays with purified proteins. Then, we investigated the effects of the coexpression of the beta-subunit of CK2 on the transactivation and transrepression activity of p53. We found that transactivation of the mdm2, p21(WAF1/CIP1) and cyclin G promoter was inhibited in three different cell lines whereas transactivation of the bax promoter was not affected in COS1 cells but down-regulated in MCO1 and SaosS138V21 cells. p53 mediated transrepression of the fos promoter was not influenced by coexpression of the CK2 beta-subunit. Taken together we propose a cell type dependent fine regulation of the p53 transactivation function by the CK2 beta-subunit in vivo, which does not affect p53 mediated transrepression.  相似文献   

3.
Human wild-type and mutant p53 genes were expressed under the control of a galactose-inducible promoter in Saccharomyces cerevisiae. The growth rate of the yeast was reduced in cells expressing wild-type p53, whereas cells transformed with mutant p53 genes derived from human tumors were less affected. Coexpression of the normal p53 protein with the human cell cycle-regulated protein kinase CDC2Hs resulted in much more pronounced growth inhibition that for p53 alone. Cells expressing p53 and CDC2Hs were partially arrested in G1, as determined by morphological analysis and flow cytometry. p53 was phosphorylated when expressed in the yeast, but differences in phosphorylation did not explain the growth inhibition attributable to coexpression of p53 and CDC2Hs. These results suggest that wild-type p53 has a growth-inhibitory activity in S. cerevisiae similar to that observed in mammalian cells and suggests that this yeast may provide a useful model for defining the pathways through which p53 acts.  相似文献   

4.
Murine double-minute clone 2 protein (MDM2) is an E3 ubiquitin ligase that regulates the turnover of several cellular factors including the p53 tumor suppressor protein. As part of the mechanism of p53 induction in response to DNA damage, a cluster of serine residues within the central acidic domain of MDM2 become hypophosphorylated, leading to attenuation of MDM2-mediated p53 destruction. In the present study, we identify the protein kinase CK1delta as a major cellular activity that phosphorylates MDM2. Amino acid substitution, coupled with phosphopeptide analyses, indicates that several serine residues in the acidic domain, including Ser-240, Ser-242, and Ser-246, as well as Ser-383 in the C-terminal region, are phosphorylated by CK1delta in vitro. We also show, through expression of a dominant negative mutant of CK1delta or treatment of cells with IC261, a CK1delta-selective inhibitor, that MDM2 is phosphorylated by CK1delta in cultured cells. These data establish the identity of a key signaling molecule that promotes the phosphorylation of a major regulatory region in MDM2 under normal growth conditions.  相似文献   

5.
6.
Tumor suppressor p53 plays a critical role in cellular responses, such as cell cycle arrest and apoptosis following DNA damage. DNA damage-induced cell death can be mediated by a p53-dependent or p53-independent pathway. Although p53-mediated apoptosis has been well documented, little is known about the signaling components of p53-independent cell death. Here we report that the death domain kinase, RIP (receptor-interacting protein), is important for DNA damage-induced, p53-independent cell death. DNA damage induces cell death in both wild-type and p53-/- mouse embryonic fibroblast cells. We found that RIP-/- mouse embryonic fibroblast cells, which have a mutant form of the p53 protein, are resistant to DNA damage-induced cell death. The reconstitution of RIP protein expression in RIP-/- cells restored the sensitivity of cells to DNA damage-induced cell death. We also found that RIP mediates this process through activating mitogen-activated protein kinase, JNK1. Furthermore, knocking down the expression of RIP blocked DNA damage-induced cell death in the human colon cancer cell line, p53 null HCT 116. Taken together, our study demonstrates that RIP is one of the critical components involved in mediating DNA damage-induced, p53-independent cell death.  相似文献   

7.
8.
9.
The constitutive activation of the Janus kinase 2 (JAK2) and mutation of the p53 tumor suppressor are both detected in human cancer. We examined the potential regulation of JAK2 phosphorylation by wild-type (wt) p53 in human ovarian cancer cell lines, Caov-3 and MDAH2774, which harbor mutant form of p53 tumor suppressor gene and high levels of phosphorylated JAK2. The wt p53 gene was re-introduced into the cells using an adenovirus vector. In addition to wt p53, mutant p53 22/23, mutant p53-175, and NCV (negative control virus) were introduced into the cells in the control groups. Expression of wt p53, but not that of p53-175 mutant, diminished JAK2 tyrosine phosphorylation in MDAH2774 and Caov-3 cell lines. Expression of wt p53 or p53 22/23 mutant did not cause a reduction in the phosphorylation of unrelated protein kinases, ERK1 and ERK2 (ERK1/2). The inhibition of JAK2 tyrosine phosphorylation can be reversed by tyrosine phosphatase inhibitor, sodium orthovanadate. Protein tyrosine phosphatase 1-B levels increased with introduction of wt p53 and may be involved in the dephosphorylation of JAK2. These findings present a possible p53-dependent cellular process of modulating JAK2 tyrosine phosphorylation in ovarian cancer cell lines.  相似文献   

10.
J Milner  E A Medcalf 《Cell》1991,65(5):765-774
Activating mutations of p53 promote tumor progression. The mutant protein adopts a characteristic conformation, which lacks the growth suppressor function of wild-type p53. We show that mutant p53 can drive cotranslated wild-type p53 into the mutant conformation: a similar effect in vivo would block wild-type suppressor function with dominant negative effect. The cotranslational effect of mutant p53 on wild-type conformation depends upon interaction between nascent polypeptides and oligomerization of the full-length proteins. We also show that oligomers of p53 proteins can be induced to change conformation in a cooperative manner. Cell growth stimulation induces a similar conformational change in p53, and our present results indicate that this may involve allosteric regulation.  相似文献   

11.
12.
Survivin inhibits anti-growth effect of p53 activated by aurora B   总被引:5,自引:0,他引:5  
Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated beta-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53(-/-) mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53(-/-) astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53.  相似文献   

13.
14.
The p53 tumor suppressor protein induces transient growth arrest or apoptosis in response to genotoxic stress and mediates the irreversible growth arrest of cellular senescence. We present evidence here that p53 also contributes to the reversible, growth factor-dependent arrest of quiescence (G(0)). Microinjection of expression vectors encoding either MDM2 or a pRb-binding mutant of SV40 T antigen, both of which abrogate p53 function, stimulated quiescent normal human fibroblasts to initiate DNA synthesis and were 40-70% as effective as wild-type T antigen. Electrophoretic mobility shift and p53 transactivation assays showed that p53 activity was higher in quiescent and senescent cells compared with proliferating cells. As proliferating cells entered G(0) after growth factor withdrawal, the p53 mRNA level increased, followed by transient accumulation of the protein. Shortly thereafter, the expression (mRNA and protein) of p21, a p53 target gene and effector of cell cycle arrest, increased. Finally, stable expression of the HPV16 E6 oncogene or dominant negative p53 peptide, GSE-22, both of which inhibit p53 function, delayed entry into quiescence following growth factor withdrawal. Our data indicate that p53 is activated during both quiescence and senescence. They further suggest that p53 activity contributes, albeit not exclusively, to the quiescent growth arrest.  相似文献   

15.

Background

The involvement of protein kinase CK2 in sustaining cancer cell survival could have implications also in the resistance to conventional and unconventional therapies. Moreover, CK2 role in blood tumors is rapidly emerging and this kinase has been recognized as a potential therapeutic target. Phase I clinical trials with the oral small ATP-competitive CK2 inhibitor CX-4945 are currently ongoing in solid tumors and multiple myeloma.

Methods

We have analyzed the expression of CK2 in acute myeloid leukemia and its function in cell growth and in the response to the chemotherapeutic agent daunorubicin We employed acute myeloid leukemia cell lines and primary blasts from patients grouped according to the European LeukemiaNet risk classification. Cell survival, apoptosis and sensitivity to daunorubicin were assessed by different means. p53-dependent CK2-inhibition-induced apoptosis was investigated in p53 wild-type and mutant cells.

Results

CK2α was found highly expressed in the majority of samples across the different acute myeloid leukemia prognostic subgroups as compared to normal CD34+ hematopoietic and bone marrow cells. Inhibition of CK2 with CX-4945, K27 or siRNAs caused a p53-dependent acute myeloid leukemia cell apoptosis. CK2 inhibition was associated with a synergistic increase of the cytotoxic effects of daunorubicin. Baseline and daunorubicin-induced STAT3 activation was hampered upon CK2 blockade.

Conclusions

These results suggest that CK2 is over expressed across the different acute myeloid leukemia subsets and acts as an important regulator of acute myeloid leukemia cell survival. CK2 negative regulation of the protein levels of tumor suppressor p53 and activation of the STAT3 anti-apoptotic pathway might antagonize apoptosis and could be involved in acute myeloid leukemia cell resistance to daunorubicin.
  相似文献   

16.
17.
18.
Chang PC  Li M 《Journal of virology》2008,82(1):278-290
K-cyclin, encoded by Kaposi's sarcoma-associated herpesvirus, has previously been demonstrated to activate cyclin-dependent kinase 6 (Cdk6) to induce the phosphorylation of various cell cycle regulators. In this study, we identified Cdk9 as a new K-cyclin-associated Cdk and showed that K-cyclin interacted with Cdk9 through its basic domain. We hypothesized that K-cyclin served as a regulatory subunit for the activity of Cdk9. Recent reports show that Cdk9 phosphorylates tumor suppressor p53, and we found that the K-cyclin/Cdk9 interaction greatly enhanced the kinase activity of Cdk9 toward p53. The phosphorylation site(s) of K-cyclin/Cdk9 kinase complexes was mapped in the transactivation domain of p53. We showed that the ectopic expression of K-cyclin led to a sustained increase of p53 phosphorylation on Ser33 in vivo, and the phosphorylation could be inhibited by a dominant negative Cdk9 mutant, dn-Cdk9. Using p53-positive U2OS and p53-null SaOS2 cells, we demonstrated that K-cyclin-induced growth arrest was associated with the presence of p53. In addition, K-cyclin-induced p53-dependent growth arrest was rescued by the dn-Cdk9- or Cdk9-specific short hairpin RNA in SaOS2 cells. Together, our findings for the first time demonstrated the interaction of K-cyclin and Cdk9 and revealed a new molecular link between K-cyclin and p53.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号