首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Experimental mycology》1989,13(1):38-48
Mutants of Phycomyces have played a major role in the analysis of phototropism and other responses. Fifteen new mutants of Phycomyces with abnormal phototropism (genotype mad) have been isolated on the basis of their inability to bend toward dim unilateral blue light (fluence rate 5 × 10−7 W m−2), a protocol different from those employed in previous mutant hunts. One mutant resulted from chemical mutagenesis with ICR-170, and the other 14 were induced with N-methyl-N′-nitro-N-nitro-soguanidine. Seven of the mutants are “night blind”; six have phototropic thresholds intermediate between those of wild type (10−9 W m−2) and madA strains (∼ 10−4 W m−2); and one has a threshold similar to that of night-blind madB and madC mutants. The other eight mutants are “stiff”, with various reductions of tropic responsiveness. Two of them, when compared to previously isolated stiff mutants, show unusually weak responses to light, barriers, and gravity.  相似文献   

2.
P. Galland  A. Palit  E. D. Lipson 《Planta》1985,165(4):538-547
The relationship between phototropism and the light-growth response of Phycomyces blakesleeanus (Burgeff) sporangiophores was investigated. After dark adaptation, stage-IVb sporangiophores were exposed to short pulses of unilateral light at 450 nm wavelength. The sporangiophores show a complex reaction to pulses of 30 s duration: maximal positive bending at 3·10-4 and 10-1 J m-2, but negative bending at 30 J m-2. The fluence dependence for the light-growth response also is complex, but in a different way than for phototropism; the first maximal response occurs at 1.8·10-3 J m-2 with a lesser maximum at 30 J m-2. A hypertropic mutant, L85 (madH), lacks the negative phototropism at 30 J m-2 but gives results otherwise similar to the wild type. The reciprocity rule was tested for several combinations of fluence rates and pulse durations that ranged from 1 ms to 30 s. Near the threshold fluence (3·10-5 J m-2), both responses increase for pulse durations below 67 ms and both have an optimum at 2 ms. At a fluence of 2.4·10-3 J m-2, both responses decrease for pulse durations below 67 ms. The hypertropic mutant (madH), investigated for low fluence only, gave similar results. In both strains, the time courses for phototropism and light-growth response, after single short pulses of various durations, show no clear correlation. These results imply that phototropism cannot be caused by linear superposition of localized light-growth responses; rather, they point to redistribution of growth substances as the cause of phototropism.  相似文献   

3.
A. Palit  P. Galland  E. D. Lipson 《Planta》1989,177(4):547-553
Sporangiophores of Phycomyces blakesleeanus Burgeff that have been grown in darkness and are then suddenly exposed to unilateral light show a two-step bending response rather than a smooth, monotonic response found in light-adapted specimens (Galland and Lipson, 1987, Proc. Natl. Acad. Sci. USA 84, 104–108). The stepwise bending is controlled by two photosystems optimized for the low-and high-intensity ranges. These two photosystems have now been studied in phototropism mutants with defects in genes madA, madB, and madC. All three mutations raise the threshold of the low-intensity (low-fluence) photosystem by about 106-fold and that of the high-intensity (high-fluence) system by about 103-fold. Estimates for the light-adaptation time constants of the low-and high-intensity photosystems show that the mutants are affected in adaptation. In the mutants, the light-adaptation kinetics are only slightly affected in the low-intensity photosystem but, for the high-intensity photosystem, the kinetics are considerably slower than in the wild type.Abbreviations WT wild type  相似文献   

4.
Sporangiophores of the zygomycete fungus Phycomyces blakesleeanus are sensitive to near UV and blue light. The quantum effectiveness of yellow and red light is more than 6 orders of magnitude below that of near UV or blue light. Phototropism mutants with a defect in the gene madC are about 106 times less sensitive to blue light than the wild type. These mutants respond, however, to yellow and red light when the long wavelength light is given simultaneously with actinic blue light. In the presence of yellow or red light the photogravitropic threshold of madC mutants is lowered about 100-fold though the yellow and the red light alone are phototropically ineffective. A step-up of the fluence rate of broad-band red light (> 600 nm) from 6 × 10?3 to 6W m?2 elicits, in mutant C 148 madC, a transient deceleration of the growth rate. The growth rate of the wild type is not affected by the same treatment. The results are interpreted in terms of a red light absorbing intermediate of the blue light photoreceptor of Phycomyces. The intermediate should be short-lived in the wild type and should accumulate in madC mutants.  相似文献   

5.
Koga  K.  Sato  T.  Ootaki  T. 《Planta》1984,162(2):97-103
The sporangiophore (spph) of a piloboloid mutant, genotype pil, of Phycomyces ceases elongation and expands radially in the growth zone shortly after reaching the developmental stage IV b. The pil spph is always negatively phototropic to unilateral visible light when its diameter exceeds 210 m. Photoinduction of spph initiation, light-growth response, threshold of light energy fluence rate for the negative phototropism, avoidance and gravitropism in the pil mutant are all normal. In liquid paraffin, the pil spph shows negative phototropism as does the wild-type spph. Genetic analyses indicate that the negative phototropism of the pil mutant is governed by the phenotypic characteristics of pil but not by specific gene(s) responsible for negative phototropism. These facts imply that the reverse phototropism of the pil mutant results from a loss of the convergent lens effect of the cell because of the increase in cell diameter.Abbreviations spph(s) sporangiophore(s) - wt(s) wild type(s)  相似文献   

6.
Phototropism and polarotropism in protonemata of the moss Ceratodon purpureus are controlled by the photoreceptor phytochrome. One class of phototropism mutants is characterised by growing randomly when kept for a prolonged time (5 d or longer) in unilateral red light. It was found that a subclass of these mutants grows faster than the wild type, the rate of cell division and the length of the cells being increased. This difference is found for light-grown and dark-grown filaments. It is therefore suggested that the mutant phenotype neither results from a defect in phytochrome photoconversion nor from a defect in phytochrome-gradient formation. Instead, it is possible that a factor which is involved in both signal transduction of phototropism and regulation of cell size and cell division is deregulated. If dark-grown mutant filaments are phototropically stimulated for 24 h, they show a weak phototropic response. Phototropism and polarotropism fluence-rate effect curves for mutants were flattened and shifted to higher fluence rates compared with those for the wild type. With wild-type filaments, a previously unreported response was observed. At a low fluence rate, half of the filaments grew positively phototropically, while the other half grew negatively phototropically. It seems that under these conditions, a phytochrome gradient with two maxima for the far-red-absorbing form of phytochrome (Pfr) within the cross-section of the cell is displayed by the response of the filaments. At higher fluence rates, all filaments of the wild type grew towards the light. These data and results from microbeam irradiation experiments and from phototropism studies with filaments growing within agar, indicate that light refraction plays an important role in the formation of the Pfr gradient in phototropism of Ceratodon. Received: 10 September 1998 / Accepted: 30 December 1998  相似文献   

7.
The role of phytochrome A (phyA) and phytochrome B (phyB) in phototropism was investigated by using the phytochrome-deficient mutants phyA-101 , phyB-1 and a phyA/phyB double mutant. The red-light-induced enhancement of phototropism, which is normally observed in wild-type seedlings, could not be detected in the phyA/phyB mutant at fluences of red light between 0.1 and 19 000 μmol m−2. The loss of phyB has been shown to have no apparent effect on enhancement, while the loss of phyA resulted in a loss of enhancement only in the low fluence range (Janoudi et al. 1997). The conclusions of the aforementioned study can now be modified based on the current results which indicate that phototropic enhancement in the high fluence range is mediated by either phyA or phyB, and that other phytochromes have no role in enhancement. First positive phototropism was unaffected in phyA-101 and phyB-1 However, the magnitude of first positive phototropism in the phyA/phyB mutant was significantly lower than that of the wild-type Landsberg parent. Thus, the presence of either phyA or phyB is required for normal expression of first positive phototropism. The time threshold for second positive phototropism is unaltered in the phyA-101 and phyB mutants. However, the time threshold in the phyA/phyB mutant is about 2 h, approximately six times that of the wild type. Finally, the magnitude of second positive phototropism in both phyA-101 and phyB-1 is diminished in comparison with the wild-type response. Thus, phyA and phyB, acting independently or in combination, regulate the magnitude of phototropic curvature and the time threshold for second positive phototropism. We conclude that the presence of phyA and phyB is required, but not sufficient, for the expression of normal phototropism.  相似文献   

8.
Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in `first positive' phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.  相似文献   

9.
Light and dark adaptation in Phycomyces phototropism   总被引:3,自引:1,他引:2       下载免费PDF全文
Light and dark adaptation of the phototropism of Phycomyces sporangiophores were analyzed in the intensity range of 10(-7)-6 W X m- 2. The experiments were designed to test the validity of the Delbruck- Reichardt model of adaptation (Delbruck, M., and W. Reichardt, 1956, Cellular Mechanisms in Differentiation and Growth, 3-44), and the kinetics were measured by the phototropic delay method. We found that their model describes adequately only changes of the adaptation level after small, relatively short intensity changes. For dark adaptation, we found a biphasic decay with two time constants of b1 = 1-2 min and b2 = 6.5-10 min. The model fails for light adaptation, in which the level of adaptation can overshoot the actual intensity level before it relaxes to the new intensity. The light adaptation kinetics depend critically on the height of the applied pulse as well as the intensity range. Both these features are incompatible with the Delbruck-Reichardt model and indicate that light and dark adaptation are regulated by different mechanisms. The comparison of the dark adaptation kinetics with the time course of the dark growth response shows that Phycomyces has two adaptation mechanisms: an input adaptation, which operates for the range adjustment, and an output adaptation, which directly modulates the growth response. The analysis of four different types of behavioral mutants permitted a partial genetic dissection of the adaptation mechanism. The hypertropic strain L82 and mutants with defects in the madA gene have qualitatively the same adaptation behavior as the wild type; however, the adaptation constants are altered in these strains. Mutation of the madB gene leads to loss of the fast component of the dark adaptation kinetics and to overshooting of the light adaptation under conditions where the wild type does not overshoot. Another mutant with a defect in the madC gene shows abnormal behavior after steps up in light intensity. Since the madB and madC mutants have been associated with the receptor pigment, we infer that at least part of the adaptation process is mediated by the receptor pigment.  相似文献   

10.
Phytochrome modulation of blue-light-induced phototropism   总被引:1,自引:0,他引:1  
Red light enhances hypocotyl phototropism toward unilateral blue light through a phytochrome‐mediated response. This study demonstrates how the phytochromes modulate blue‐light‐induced phototropism in the absence of a red light pre‐treatment. It was found that phytochromes A, B, and D have conditionally overlapping functions in the promotion of blue‐light‐induced phototropism. Under very low blue light intensities (0.01 µmol m?2 s?1) phyA activity is necessary for the progression of a normal phototropic response, whereas above 1.0 µmol m?1 s?2 phyB and phyD have functional redundancy with phyA to promote phototropism. PhyA also contributes to attenuation of phototropism under high fluence rates of unilateral blue light, which was previously shown to be dependent on the phototropins and cryptochromes. From these results, it appears that phytochromes are required to develop a robust phototropic response under low fluence rates, whereas under high irradiances where phototropism may be less important, phyA suppresses phototropism.  相似文献   

11.
Wild type Crithidia fasciculata and three drug-resistant mutant strains that have shown “flagellar adherence” were studied as to their ability to agglutinate with lectins specific for receptor molecules containing N-acetyl glucosamine, N-acetyl galactosamine, galactose, mannose-like residues, fucose, and sialic acid. Escherichia coli with mannose-sensitive fimbriae was also used as an agglutination probe. The presence of D-GalNAc, D-Gal, and mannose-like residues was detected in the wild strain. Generally, in the mutants, residues of these sugar units were present in greater concentrations when compared to the wild type strain. β-Galactosidase treatment showed that β-D-Galp units are exposed on the cell membrane. All types of cell agglutination including flagellum-flagellum (F-F), flagellum-soma (F-S), and soma-soma (S-S) were observed when lectins were used; however, with E. coli only the F-F type of cell agglutination was observed with the wild type strain and the TFRR1 mutant. All types of agglutination were observed with the other two mutants.  相似文献   

12.
To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox mutant with naturally reduced PQ is characterized by slower QA reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH–mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox mutant. Continuous illumination of Ox mutant cells with low-intensity blue light, that accelerates QA reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH–mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.  相似文献   

13.
The giant sporangiophores of Phycomyces blakesleeanus turn towards blue and away from ultraviolet C sources (wavelength under 310 nm). We have isolated fifteen mutants with normal blue tropism but defective ultraviolet tropism. Wild-type sporangiophores described a double turn when exposed successively to blue and ultraviolet beams coming from the same side; under certain conditions, the mutants turned only to the blue. The new uvi mutations modified the behaviour in heterokaryosis and were lethal in homokaryosis, i.e., they affected essential cellular components. The responses of the wild type and one of the mutants were registered and evaluated with a computer-aided device. The mutant behaved normally under blue light, but took longer than the wild type to turn away from the ultraviolet source. With very weak ultraviolet stimuli (10(-8) and l0(-9) W m-2), the wild type turned towards the source, but the mutant did not respond. Calculations of absorbed-energy distributions in the sporangiophore showed that Phycomyces responds differently to similar spatial distributions of blue and ultraviolet radiations. Wild-type and mutant sporangiophores had the same high ultraviolet absorption due to gallic acid. We conclude that ultraviolet tropism is not just a modification of blue phototropism due to the high ultraviolet absorption of the sporangiophores. Phycomyces has a separate sensory system responsive to ultraviolet radiation, but not to blue light.  相似文献   

14.
Factors affecting the efficiency of selection of “reverants” of salvage pathway mutants in media containing amethopterin have been examined. Our V79 Chines hamster cell line was found to require a significantly higher level of thymidine for optimal growth in such media than has been reported for other cell lines. Hypoxanthine (but not glycine) was also required for reversal of amethopterin toxicity, but levels did not differ significantly from those reported elsewhere. Growth in HAT was also dependent on plating density and serum batch. Our modification (VHAT) was compared with published HAT recipies in back selection reconstruction experiments. A sharp fall in EOR (efficiency of recovery) of wild type cells from mixtures with mutants at plating densities greater than 3500 cells/cm2 (105 cells/6 cm dish) was observed for VHAT. EOR with other HAT recipes was lower still, and was affected also by the particular mutant used in the mixture.EMS induced “revertants” were isolated from three 8AZr mutants by plating in VHAT. All. revertants were however amethopterin resistant, they were also 8AZ resistant and the mobility of residual HGPRT (as measured by polyacrylamide gel electrophoresis) was similar to that of their 8AZr parents i.e. dissimilar from that in wild type. The modal chromosome number of V79 wild type cells was 21. No significant deviation from this mode was detected in any of the mutant lines examined. The data indicate that the recovery of colonies in HAT from 8AZr mutants does not necessarily indicate that a back mutation in the structural gene for HGPRT has occurred. Thus, the frequency of HAT+ colonies cannot be taken as a direct indication of reversion frequencies.  相似文献   

15.
The light-growth responses of Phycomyces behavioral mutants, defective in genes madB, madC, and madH, were studied with the sum-of-sinusoids method of system identification. Modified phototropic action spectra of these mutants have indicated that they have altered photoreceptors (P. Galland and E.D. Lipson, 1985, Photochem. Photobiol. 41:331). In the two preceding papers, a kinetic model of the light-growth response system was developed and applied to wild-type frequency kernels at several wavelengths and temperatures. The present mutant studies were conducted at wavelength 477 nm. The log-mean intensity was 6 X 10(-2)W m-2 for the madB and madC night-blind mutants, and 10(-4)W m-2 for the madH hypertropic mutant. The prolonged light-growth responses of the madB and madC mutants are reflected in the reduced dynamic order of their frequency kernels. The linear response of the hypertropic mutant is essentially normal, but its nonlinear behavior shows modified dynamics. The behavior of these mutants can be accounted for by suitable modifications of the parametric model of the system. These modifications together support the hypothesis that an integrated complex mediates sensory transduction in the light responses and other responses of the sporangiophore.  相似文献   

16.
The “Ming” lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general.  相似文献   

17.
pPLA‐I is the evolutionarily oldest patatin‐related phospholipase A (pPLA) in plants, which have previously been implicated to function in auxin and defence signalling. Molecular and physiological analysis of two allelic null mutants for pPLA‐I [ppla‐I‐1 in Wassilewskija (Ws) and ppla‐I‐3 in Columbia (Col) ] revealed pPLA‐I functions in auxin and light signalling. The enzyme is localized in the cytosol and to membranes. After auxin application expression of early auxin‐induced genes is significantly slower compared with wild type and both alleles show a slower gravitropic response of hypocotyls, indicating compromised auxin signalling. Additionally, phytochrome‐modulated responses like abrogation of gravitropism, enhancement of phototropism and growth in far red‐enriched light are decreased in both alleles. While early flowering, root coils and delayed phototropism are only observed in the Ws mutant devoid of phyD, the light‐related phenotypes observed in both alleles point to an involvement of pPLA‐I in phytochrome signalling.  相似文献   

18.
《Experimental mycology》1981,5(2):101-111
Phycomyces sporangiophores exposed to continuous unilateral illumination reach an angle determined by the competition between phototropism and geotropism. This photogeotropism angle provides a quantitative assay for phototropic sensitivity as a function of light intensity. Seven unlinked genes have been associated with the sensory transduction chain for phototropism. A complete family of single and double mutant strains are available for a standard set of alleles for these genes. Photogeotropism measurements have been carried out comparatively on these strains as well as wild-type and one triple mutant affected in genes associated with early steps in the sensory pathway. These measurements were recorded over a millionfold range of light intensity. The results reveal a variety of reductions in sensitivity and responsiveness for the double mutants. Some of the double mutants, as well as the triple mutant, are extremely insensitive to light, but at the highest intensities none appear to be totally blind. The results are examined in the framework of two models for photogeotropism.  相似文献   

19.
Three light intensity-dependent Chl b-deficient mutants, two in wheat and one in barley, were analyzed for their xanthophyll cycle carotenoids and Chl fluorescence characteristics under two different growth PFDs (30 versus 600 mol photons·m–2 s–1 incident light). Mutants grown under low light possessed lower levels of total Chls and carotenoids per unit leaf area compared to wild type plants, but the relative proportions of the two did not vary markedly between strains. In contrast, mutants grown under high light had much lower levels of Chl, leading to markedly greater carotenoid to Chl ratios in the mutants when compared to wild type. Under low light conditions the carotenoids of the xanthophyll cycle comprised approximately 15% of the total carotenoids in all strains; under high light the xanthophyll cycle pool increased to over 30% of the total carotenoids in wild type plants and to over 50% of the total carotenoids in the three mutant strains. Whereas the xanthophyll cycle remained fairly epoxidized in all plants grown under low light, plants grown under high light exhibited a considerable degree of conversion of the xanthophyll cycle into antheraxanthin and zeaxanthin during the diurnal cycle, with almost complete conversion (over 90%) occurring only in the mutants. 50 to 95% of the xanthophyll cycle was retained as antheraxanthin and zeaxanthin overnight in these mutants which also exhibited sustained depressions in PS II photochemical efficiency (Fv/Fm), which may have resulted from a sustained high level of photoprotective energy dissipation activity. The relatively larger xanthophyll cycle pool in the Chl b-deficient mutant could result in part from the reported concentration of the xanthophyll cycle in the inner antenna complexes, given that the Chl b-deficient mutants are deficient in the peripheral LHC-II complexes.Abbreviations A antheraxanthin - Chl chlorophyll - Fo and Fm minimal yield (at open PS II reaction centers) and maximal yield (at closed centers) of chlorophyll fluorescence in darkness - F level of fluorescence during illumination with photosynthetically active radiation - Fm maximal yield (at closed centers) of chlorophyll fluorescence during illumination with photosynthetically active radiation - (Fm–F)/Fm actual efficiency of PS II during illumination with photosynthetically active radiation - Fv/Fm+(Fm–Fo)/Fm intrinsic efficiency of PS II in darkness - LHC_II light-harvesting chlorophyll-protein complex of Photosystem II - PFD photon flux density (between 400 and 700 nm) - PS I Photosystem I - PS II Photosystem II - V violaxanthin - Z zeaxanthin  相似文献   

20.
The white-noise method of system identification has been applied to the transient light-growth response of a set of seven mutants of Phycomyces with abnormal phototropism, affected in genes madA to madG. The Wiener kernels, which represent the input-output relation of the light-growth response, have been evaluated for each of these mutants and the wild-type strain at a log-mean blue-light intensity of 0.1 W m-2. Additional experiments were done at 3x10-4 and 10 W m-2 on the madA strain C21 and wild-type. In the normal intensity range (0.1 W m-2) the madA mutant behaves similarly to wild-type, but, at high intensity, the madA response is about twice as strong as that of wild-type. Except for C21 (madA), the first-order kernels of all mutants were smaller than the wild-type kernel. The first-order kernels for C111 (madB) and L15 (madC) show a prolonged time course, and C111 has a longer latency. The kernels for C110 (madE), C316 (madF), and C307 (madG) have a shallow and extended negative phase. For C68 (madD), the latency and time course are shorter than in the wild-type. These features are also reflected in the parameters estimated from fits of the anlytical model introduced in the previous paper to the experimental transfer functions (Fourier transforms of the kernels). The kernel for L15 (madC) is described better by a model that lacks one of the two second-order low-pass filters, because its response kinetics are dynamically of lower order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号