首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified phosphoglyceromutase was hybridized in vitro with pure biphosphoglyceromutase . The hybrid showed an electrophoretic mobility identical to that of the intermediate band of red cell phosphoglyceromutase activity in the hemolysate patterns. Electrophoretic tests showed that the partially purified hybrid displayed both bisphosphoglyceromutase and phosphoglyceromutase activities and that the sample contained also a small portion of non-hybrid bisphosphoglyceromutase . By constrast to a non-hybrid mixture of the two purified mutases the hybrid exhibited heat instability of bisphosphoglyceromutase activity and neutralization of phosphoglyceromutase activity by anti- bisphosphoglyceromutase antibody.  相似文献   

2.
Bisphosphoglyceromutase, 2,3-bisphosphoglycerate phosphatase and phosphoglyceromutase have been purified from human red cells. Three enzymes were co-purified throughout all purification steps. Three fractions (peaks I, II and III) which were chromatographically separable and had three activities in different ratios were obtained. Peak III which contained the main bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities was purified to homogeneity by electrophoretic and ultracentrifugal analyses. The homogeneous preparation had the phosphoglyceromutase activity. The three activities were lost at the same rate during thermal inactivation. Thus, bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities, which are responsible for 2,3-bisphosphoglycerate metabolism in red cells, are displayed by the same enzyme protein which has phosphoglyceromutase activity. Peaks I and II were rich in the phosphoglyceromutase activity. Both peaks showed bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities, although these two activities were much smaller than those of peak III. Some of the enzymic properties of peak III are described. Comparative studies on three peaks showed that the phosphoglyceromutase of peak III differed from that of peaks I and II in the kinetic property and thermostability.  相似文献   

3.
1. A new and efficient method for preparation of pure phosphoglyceromutase from baker's yeast (Saccharomyces cerevisiae) is described. Proteolytic alterations of the enzyme during extraction can be minimized by grinding the dried yeast with aluminium oxide at low temperature. 2. Yeast phosphoglyceromutase contains four highly similar, probably idential subunits of molecular weight 28000, a conclusion based on the following observations. Polyacrylamide gel electrophoresis containing dodecylsulphate or urea gives a single band, indicating that the enzyme is composed of four subunits similar in their molecular weight and net charge. Cyanogen bromide cleavage and tryptic digestion of the enzyme yield the number of peptides expected for identical subunites from the amino acid composition analysis. 3. The purified phosphoglyceromutase preparation has bisphosphoglyceromutase activity synthesizing 2,3-bisphosphoglycerate from 1,3-bisphosphoglycerate and 3-phosphoglycerate. It has been reported that yeast phosphoglyceromutase catalyzes the hydrolysis of 2,3-bisphosphoglycerate at the same active site which catalyzes the phosphoglyceromutase reaction [Sasaki, R. et al (1971) Biochim. Biophys, Acta, 227, 584-594, 595-607]. Immunological studies and chemical modification experiments indicate that bisphosphoglyceromutase activity also is due to the phosphoglyceromutase protein and involves amino groups which have been shown to be essential for the other two activities.  相似文献   

4.
1. Treatment of purified rabbit phosphoglyceromutase (M type) with N-ethylmaleimide or with iodoacetamide produces the concurrent loss of phosphoglyceromutase activity with its collateral glycerate-2,3-P2 phosphatase activity. 2. Differences are observed in the protective effect of glycerate-2,3-P2 and of glycolate-2-P against N-ethylmaleimide and iodoacetamide treatments. 3. Specific chicken antibodies obtained by injection of the purified rabbit M type phosphoglyceromutase do not cross-react with the B type but neutralize both rabbit and human M type phosphoglyceromutase. 4. Purified rabbit M type phosphoglyceromutase can hybridize in vitro with the purified human B type or with purified human glycerate-2,3-P2 synthase. 5. Its ability to hybridize with glycerate-2,3-P2 synthase is unchanged after iodoacetamide treatment.  相似文献   

5.
A mutant strain, KLAM59, of Pseudomonas aeruginosa has been isolated that synthesizes a catalytically inactive amidase. The mutation in the amidase gene has been identified (Glu59Val) by direct sequencing of PCR-amplified mutant gene and confirmed by sequencing the cloned PCR-amplified gene. The wild-type and altered amidase genes were cloned into an expression vector and both enzymes were purified by affinity chromatography on epoxy-activated Sepharose 6B-acetamide followed by gel filtration chromatography. The mutant enzyme was catalytically inactive, and it was detected in column fractions by monoclonal antibodies previously raised against the wild-type enzyme using an ELISA sandwich method. The recombinant wild-type and mutant enzymes were purified with a final recovery of enzyme in the range of 70–80%. The wild-type and mutant enzymes behaved differently on the affinity column as shown by their elution profiles. The molecular weights of the purified wild-type and mutant amidases were found to be 210,000 and 78,000 Dalton, respectively, by gel filtration chromatography. On the other hand, the mutant enzyme ran as a single protein band on SDS-PAGE and native PAGE with a M r of 38,000 and 78,000 Dalton, respectively. These data suggest that the substitution Glu59Val was responsible for the dimeric structure of the mutant enzyme as opposed to the hexameric form of the wild-type enzyme. Therefore, the Glu59 seems to be a critical residue in the maintenance of the native quaternary structure of amidase.  相似文献   

6.
An α-glucosidase active at acid pH and presumably lysosomal in origin has been purified from human liver removed at autopsy. The enzyme has both α-1,4-glucosidase and α-1,6-glucosidase activities. The Km of maltose for the enzyme is 8.9 mm at the optimal pH of 4.0. The Km of glycogen at the optimal pH of 4.5 is 2.5% (9.62 mm outerchain end groups). Isomaltose has a Km of 33 mm when α-1,6-glucosidase activity is tested at pH 4.2. The enzyme exists in several active charge isomer forms which have pI values between 4.4 and 4.7. These forms do not differ in their specific activities. Electrophoresis in polyacrylamide gels under denaturing conditions indicates that the protein is composed of two subunits whose approximate molecular weights are 88,000 and 76,000. An estimated molecular weight of 110,000 was obtained by nondenaturing polyacrylamide gel electrophoresis. When the protein was chromatographed on Bio-Gel P-200 it was separated into two partially resolved active peaks which did not differ in their charge isomer constitution or in subunit molecular weights. One peak gave a strongly positive reaction for carbohydrate by the periodic acid-Schiff method and the other did not. Both had the same specific activity. The enzyme was antigenic in rabbits, and the antibodies so obtained could totally inhibit the hydrolytic action of the enzyme on glycogen but were markedly less effective in inhibiting activity toward isomaltose and especially toward maltose. Using these antibodies it was found that liver and skeletal muscle samples from patients with the “infantile” form or with the “adult” form of Type II glycogen storage disease, all of whom lack the lysosomal α-glucosidase, do not have altered, enzymatically inactive proteins which are immunologically cross-reactive with antibodies for the α-glucosidase of normal human liver.  相似文献   

7.
Ferrochelatase was purified from the livers of normal and protoporphyria cattle by chromatography on Blue Sepharose CL-6B in order to investigate the enzyme defect in this disorder. The increase in specific activity (up to 2900-fold) indicated that the normal and protoporphyria enzymes were purified to a similar degree. The mutant enzyme had catalytic activity which was 10 to 15% of normal ferrochelatase, although the Michaelis constants for protoporphyrin and iron were similar. The molecular mass of the normal and protoporphyria enzyme protein was 40 kDa as evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In the presence of 15 mM sodium cholate, gel filtration demonstrated a similar size. However, at a lower concentration of sodium cholate (4 mM) the molecular mass was about 240 kDa, suggesting that the purified enzymes aggregate under this condition. Polyvalent antibodies were raised in rabbits using as antigens purified normal native enzyme and normal 40-kDa protein which had been further purified by preparative SDS-PAGE. In Western blots these antibodies complexed with both the normal and mutant 40-kDa proteins. The amount of 40-kDa protein in normal and protoporphyria mitochondrial fractions was also similar as evaluated by Western blots. These studies indicate that the ferrochelatase defect in bovine protoporphyria probably results from a point gene mutation that causes a minor change in enzyme structure.  相似文献   

8.
A new technique, the quantitative determination of total enzyme concentrations by specific immunoprecipitation with purified, radioiodinated antibodies, was used to investigate the presence and possible roles of inactive enzyme in the regulation of chalcone synthase. Dark-grown cell suspension cultures from parsley (Petroselinum hortense) contained neither catalytically active nor detectable amounts of immunoprecipitable chalcone synthase. Irradiation induced large increases and subsequent decreases of both. Significant differences in the peak positions and in the half-lives of active and total chalcone synthase indicated that induced cells contained inactive as well as active enzyme forms. The presence of inactive enzyme could be explained by two different modes of regulation, (i) simultaneous de novo synthesis of active and inactive enzyme (“Simultaneous Model”), or (ii) de novo synthesis of active enzyme only, with sequential steps of inactivation and degradation (“Sequential Model”). Both models were compatible with experimental results, as analyzed mathematically by investigating the relations between curves for rate of enzyme synthesis, enzyme activity, total enzyme, and half-lives of active and total enzyme. However, the “Simultaneous Model” postulated that de novo synthesis of inactive enzyme represented always the vast majority of total enzyme synthesis, while the Sequential Model integrated inactive enzyme with facility in a sequence of irreversible inactivation and degradation of active enzyme. Experiments with repeated induction indicated that cells containing large amounts of inactive enzyme increased enzyme activity by de novo synthesis rather than by activation of preexisting inactive enzyme.  相似文献   

9.
Aldose reductase (EC 1.1.1.21) from Pachysolen tannophilus IFO 1007 was purified 15 fold from the crude enzyme in a yield of 0.9% by pH 5 treatment, protamine sulfate precipitate, ammonium sulfate fractionation, and G-100 gel chromatography. The purified enzyme was entirely homogeneous on disc gel electrophoresis. The optimum pH and temperature were 5–6 and 50°C, and it was stable at pH 6–8 and up to 35°C. Its activity was enhanced slightly by Na2SO4, glycylglycine, glutathione, and cysteine, and inhibited remarkably by SH inhibitors such as AgNO3, HgCl2, lead acetate and iodo-acetate. Its Km values were determined ad follows: 0.97 mM for d-glyceraldehyde, 1.7 mM for dl-glyceraldehyde, 3.5 mM for d-erythrose, 12 mM for d-xylose, 18mM for l-arabinose, 25 mM for galactose, 33 mM for valeraldehyde, 33 mM for 2-deoxy-d-glucose, 50 mM for propionaldehyde, 67 mM for d-ribose, 200 mM for d-mannose, and 280 mM for acetaldehyde. The enzyme also reduced glucose, l-sorbose, butylaldehyde, and benzaldehyde. Its molecular weight was estimated to be 40,650 by sedimentation equilibrium, 40,000 by SDS polyacrylamide gel electrophoresis and 43,000 by Sephadex G-200 column chromatography.  相似文献   

10.
5-Keto-d-fructose reductase was purified about 300-fold from a mutant strain derived from Corynebacterium sp. SHS 0007 (ATCC 31090). The enzyme appeared to be homogeneous by SDS-polyacrylamide gel electrophoresis. The enzyme converted 5-keto-d-fructose to l-sorbose in the presence of NADPH. The reduction did not occur in the presence of NADH. The reverse reaction was not observed. The molecular weight of the enzyme was estimated to be about 33,000 by gel filtration and SDS-polyacrylamide gel electrophoresis. The enzyme appeared to be monomeric. The optimum pH was 6.0–7.0 for the reductase. The Km value (pH 7.0, 30°C) of the enzyme for 5-keto-d-fructose was 5.9 mM. The enzyme was relatively inactive on 2, 5-diketo-d-gluconate in the presence of NADPH.  相似文献   

11.
A form of human liver alcohol dehydrogenase previously identified on starch gel electrophoresis as the anodic band (Li, T.-K. and Magnes, L.J. Biochem. Biophys. Res. Commun. 63, 202, 1975) has now been separated from the other molecular forms of the enzyme by affinity chromatography on 4-[3-(N-6-aminocaproyl)-aminopropyl]-pyrazole-Sepharose and purified to homogeneity on Agarose-hexane-AMP. Its physical properties are similar to those of other molecular forms already known, suggesting that they may be related. In contrast to other forms, the anodic species is inactive towards methanol, and its KM for ethanol is as much as 100 times that of the other forms. This anodic form of alcohol dehydrogenase may contribute significantly to alcohol elimination in man, particularly at high alcohol concentrations when the other enzyme species are saturated.  相似文献   

12.
The Novikoff hepatoma glycogen phosphorylase b has been purified over 300-fold, free of glycogen synthetase, some of its properties have been studied, and its relationship to fetal forms of rat muscle and liver phosphorylase has been established immunochemically. Its molecular weight is approximately 200,000, and, like the liver but unlike the muscle isozyme, it does not dimerize on conversion to the a form. However, it differs from the liver isozyme in being activated by AMP (Ka = 0.2 mM) and in not being activated by sulfate ion. Antibody to the adult rat muscle phosphorylase did not inhibit the activity of the tumor or liver isozyme. Although antibody to liver or hepatoma phosphorylase had no effect on adult muscle phosphorylase, each of these antibodies partially inhibited the other enzyme. These findings indicate the presence of some liver isozyme in the tumor, and this was confirmed by isoelectric focusing. Rat liver and muscle phosphorylase (and synthetase) were low during embryonal development but rose rapidly at or shortly after birth. Immunochemical studies revealed that both fetal liver and fetal muscle phosphorylases are immunologically identifiable with the tumor enzyme; and the fetal form is also present as a major form in rat kidney and brain.  相似文献   

13.
alpha-N-Acetylglucosaminidase (EC 3.2.1.50) is a lysosomal enzyme that is deficient in the genetic disorder Sanfilippo syndrome type B. To study the human enzyme, we expressed its cDNA in Lec1 mutant Chinese hamster ovary (CHO) cells, which do not synthesize complex oligosaccharides. The enzyme was purified to apparent homogeneity from culture medium by chromatography on concanavalin A-Sepharose, Poros 20-heparin, and aminooctyl-agarose. The purified enzyme migrated as a single band of 83 kDa on SDS-PAGE and as two peaks corresponding to monomeric and dimeric forms on Sephacryl-300. It had an apparent K(m) of 0.22 mM toward 4-methylumbelliferyl-alpha-N-acetylglucosaminide and was competitively inhibited by two potential transition analogs, 2-acetamido-1,2-dideoxynojirimycin (K(i) = 0.45 microM) and 6-acetamido-6-deoxycastanospermine (K(i) = 0.087 microM). Activity was also inhibited by mercurials but not by N-ethylmaleimide or iodoacetamide, suggesting the presence of essential sulfhydryl residues that are buried. The purified enzyme preparation corrected the abnormal [(35)S]glycosaminoglycan catabolism of Sanfilippo B fibroblasts in a mannose 6-phosphate-inhibitable manner, but its effectiveness was surprisingly low. Metabolic labeling experiments showed that the recombinant alpha-N-acetylglucosaminidase secreted by CHO cells had only a trace of mannose 6-phosphate, probably derived from contaminating endogenous CHO enzyme. This contrasts with the presence of mannose 6-phosphate on naturally occurring alpha-N-acetylglucosaminidase secreted by diploid human fibroblasts and on recombinant human alpha-l-iduronidase secreted by the same CHO cells. Thus contrary to current belief, overexpressing CHO cells do not necessarily secrete recombinant lysosomal enzyme with the mannose 6-phosphate-targeting signal; this finding has implications for the preparation of such enzymes for therapeutic purposes.  相似文献   

14.
Hepatic triglyceride lipase (H-TGL) was purified from human postheparin plasma. Specific monoclonal antibodies (MAbs) were produced that discriminate between active (native) and inactive (denatured) forms of the enzyme. Mice immunized with native H-TGL resulted in MAbs that recognized only the native protein. The antibodies did not react with H-TGL treated with 1% sodium dodecyl sulfate or heated at 60 degrees C. The loss of immunoreactivity with heating correlated directly with the loss of enzyme activity and there was a corresponding increase in immunoreactivity with the MAbs prepared against the denatured enzyme. Western blot analysis of postheparin plasma with the MAbs against denatured H-TGL gave a single protein band of 65 kD; preheparin plasma showed no detectable immunoreactivity with either MAb. These immunochemical studies suggest that there are no circulating active or inactive forms of H-TGL in man. Furthermore, the MAbs provide the necessary reagents for development of immunoassays for H-TGL.  相似文献   

15.
The phosphorylated form of liver glycogen phosphorylase (alpha-1,4-glucan : orthophosphate alpha-glucosyl-transferase, EC 2.4.1.1) (phosphorylase a) is active and easily measured while the dephosphorylated form (phosphorylase b), in contrast to the muscle enzyme, has been reported to be essentially inactive even in the presence of AMP. We have purified both forms of phosphorylase from rat liver and studied the characteristics of each. Phosphorylase b activity can be measured with our assay conditions. The phosphorylase b we obtained was stimulated by high concentrations of sulfate, and was a substrate for muscle phosphorylase kinase whereas phosphorylase a was inhibited by sulfate, and was a substrate for liver phosphorylase phosphatase. Substrate binding to phosphorylase b was poor (KM glycogen = 2.5 mM, glucose-1-P = 250 mM) compared to phosphorylase a (KM glycogen = 1.8 mM, KM glucose-1-P = 0.7 mM). Liver phosphorylase b was active in the absence of AMP. However, AMP lowered the KM for glucose-1-P to 80 mM for purified phosphorylase b and to 60 mM for the enzyme in crude extract (Ka = 0.5 mM). Using appropriate substrate, buffer and AMP concentrations, assay conditions have been developed which allow determination of phosphorylase a and 90% of the phosphorylase b activity in liver extracts. Interconversion of the two forms can be demonstrated in vivo (under acute stimulation) and in vitro with little change in total activity. A decrease in total phosphorylase activity has been observed after prolonged starvation and in diabetes.  相似文献   

16.
The effects of ketotifen, meloxicam, phenyramidol-HCl and gadopentetic acid on the enzyme activity of GR were studied using human erythrocyte glutathione reductase (GR) enzymes in vitro. The enzyme was purified 209-fold from human erythrocytes in a yield of 19% with 0.31?U/mg. The purification procedure involved the preparation of haemolysate, ammonium sulphate precipitation, 2',5'-ADP Sepharose 4B affinity chromatography and Sephadex G-200 gel filtration chromatography. Purified enzyme was used in the in vitro studies. In the in vitro studies, IC(50) values and K(i) constants were 0.012?mM and 0.0008?±?0.00021?mM for ketotifen; 0.029?mM and 0.0061?±?0.00127?mM for meloxicam; 0.99?mM and 0.4340?±?0.0890?mM for phenyramidol-HCl; 138?mM and 28.84?±?4.69?mM for gadopentetic acid, respectively, showing the inhibition effects on the purified enzyme. Phenyramidol-HCl showed competitive inhibition, whereas the others showed non-competitive inhibition.  相似文献   

17.
The enzyme 4-methyleneglutaminase has been purified from Arachis hypogaea leaves. This enzyme also catalysed the deamidation of glutamine at 20% of the rate of 4-methyleneglutamine, exhibiting the same affinity for both substrates (Km  20 mM), but was inactive with asparagine. The hydrolysis of 4-methyleneglutamine was subject to competitive inhibition by glutamine, glutamate-5-hydroxamate and phenol red and non-competitive inhibition by glutamate and 4-methyleneglutamate. The enzyme activity was insensitive to a variety of salts and carboxylic acids.  相似文献   

18.
UDP-Galactose 4′-epimerase was purified ca 800-fold through a multi-step procedure which included affinity chromatography using NAD+ -Agarose. Three forms of the enzyme were separated by gel-filtration but only the major form was purified. The pH optimum of the enzyme was 9.5. Exogenous NAD+ was not required for enzymic activity but its removal caused inactivation. The enzyme was unstable below pH 7.0 but stable at pH 8.0 in the presence of glycerol and at ?20° for two months. The equilibrium constant for the enzyme-catalysed reaction was 3.2 ± 0.15. The Km for UDP-galactose and UDP-glucose were 0.12 mM and 0.25 mM, respectively. The inhibition by NADH was competitive, with a Ki of 5 μM. The MW of the enzyme was 78 000; the two minor forms showed the values of 158 000 and 39 000, respectively.  相似文献   

19.
Plant polyphenols have been extensively studied for their chemopreventive properties for human health. Dextransucrase plays an essential role in synthesizing exopolysaccharides from its exclusive substrate sucrose in Streptococcus mutans. In the present study, the effect of polyphenols gallic acid and tannic acid was investigated on the dextransucrase activity. The enzyme was purified by ethanol precipitation followed by column chromatography by Sephadex G-200 gel chromatography, followed by PEG-400 treatment. The purified enzyme exhibited 52 fold enrichment with 17.5% yield and specific activity of 3.54 Units/mg protein. On SDS-PAGE enzyme protein gave a single band with a molecular weight of 160 kDa. Dextransucrase activity was inhibited 80–90% by 0.04 mM tannic acid (TA) or 0.4 mM gallic acid (GA) suggesting that tannic acid has 10- fold more inhibitory potential than gallic acid on the activity of dextransucrase. CD/ORD studies revealed modifications in the tertiary structure of enzyme protein in presence of tannic acid and gallic acid, which were further confirmed by fluorescence spectra of the protein in presence of tannic acid. These results suggest that inhibition of dextransucrase activity in S. mutans by polyphenols may have potential applications in the prevention and control of dental caries.  相似文献   

20.
A 55-kDa form of membrane-associated phosphatidylinositol 4-kinase (ATP:phosphatidylinositol 4-phosphotransferase, EC 2.7.1.67) was purified 10,166-fold from Saccharomyces cerevisiae. The purification procedure included solubilization of microsome membranes with 1% Triton X-100 followed by chromatography with DE52, hydroxylapatite I, Q-Sepharose, Mono Q, and hydroxylapatite II. The procedure resulted in a nearly homogeneous 55-kDa phosphatidylinositol 4-kinase preparation. The 55-kDa phosphatidylinositol 4-kinase and the previously purified 45-kDa phosphatidylinositol 4-kinase differed with respect to their amino acid composition, isoelectric points, and peptide maps. Furthermore, the two forms of phosphatidylinositol 4-kinase did not show an immunological relationship. Maximum 55-kDa phosphatidylinositol 4-kinase activity was dependent on magnesium (10 mM) or manganese (0.5 mM) ions and Triton X-100 at the pH optimum of 7.0. The activation energy for the reaction was 12 kcal/mol, and the enzyme was labile above 30 degrees C. The enzyme was inhibited by thioreactive agents, MgADP, and calcium ions. A detailed kinetic analysis of the purified enzyme was performed using Triton X-100/phosphatidylinositol-mixed micelles. 55-kDa phosphatidylinositol 4-kinase activity followed saturation kinetics with respect to the bulk and surface concentrations of phosphatidylinositol and followed surface dilution kinetics. The interfacial Michaelis constant (Km) and the dissociation constant (Ks) for phosphatidylinositol in the Triton X-100 micelle surface were 1.3 mol % and 0.035 mM, respectively. The Km for MgATP was 0.36 mM. 55-kDa phosphatidylinositol 4-kinase catalyzed a sequential reaction mechanism as indicated by the results of kinetic and isotopic exchange reactions. The enzyme bound to phosphatidylinositol before ATP and released phosphatidylinositol 4-phosphate before ADP. The enzymological and kinetic properties of the 55-kDa phosphatidylinositol 4-kinase differed significantly from those of the 45-kDa phosphatidylinositol 4-kinase. This may suggest that the two forms of phosphatidylinositol 4-kinase from S. cerevisiae are regulated differentially in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号