首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arginine decarboxylase (arginine carboxy-lyase EC 4.1.1.19) of Cucumis sativus cotyledons, has a pH optimum of 8.3 and a temperature optimum of 40°. Among the various plant hormones administered to excised cotyledons in culture, benzyladenine and its riboside were most effective in increasing the arginine decarboxylase activity and putrescine content. The enzyme activity and putrescine content were significantly increased on acid feeding of the cotyledons and decreased by KCl treatment. The KCl effect could be only partially reversed by benzyladenine. Abscisic acid inhibited cotyledon growth and also reduced arginine decarboxylase and putrescine levels. This effect was overcome by cytokinins. The half life of the enzyme using cycloheximide was 3.7 hr. Dibutyryl cyclic AMP and 5′-AMP also marginally stimulated the enzyme and putrescine levels. Mixing experiments indicate that there is neither a non-dialysable activator nor inhibitor of the enzyme.  相似文献   

2.
A purified preparation of arginine decarboxylase fromCucumis sativus seedlings displayed ornithine decarboxylase activity as well. The two decarboxylase activities associated with the single protein responded differentially to agmatine, putrescine andPi. While agmatine was inhibitory (50 %) to arginine decarboxylase activity, ornithine decarboxylase activity was stimulated by about 3-fold by the guanido arnine. Agmatine-stimulation of ornithine decarboxylase activity was only observed at higher concentrations of the amine. Inorganic phosphate enhanced arginine decarboxylase activity (2-fold) but ornithine decarboxylase activity was largely uninfluenced. Although both arginine and ornithine decarboxylase activities were inhibited by putrescine, ornithine decarboxylase activity was profoundly curtailed even at 1 mM concentration of the diamine. The enzyme-activated irreversible inhibitor for mammalian ornithine decarboxylase,viz. α-difluoromethyl ornithine, dramatically enhanced arginine decarboxylase activity (3–4 fold), whereas ornithine decarboxylase activity was partially (50%) inhibited by this inhibitor. At substrate level concentrations, the decarboxylation of arginine was not influenced by ornithine andvice-versa. Preliminary evidence for the existence of a specific inhibitor of ornithine decarboxylase activity in the crude extracts of the plant is presented. The above results suggest that these two amino acids could be decarboxylated at two different catalytic sites on a single protein.  相似文献   

3.
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis was highly purified from the thermophilic bacterium Thermus thermophilus. The enzyme preparation showed a single band on SDS-polyacrylamide gel electrophoresis, a pH optimum of 7.5 and a temperature optimum at 60°C. The native enzyme which is phosphorylated could, upon treatment with alkaline phosphatase, lose all activity. The inactive form could be reversibly activated by nucleotides in the order of NTP>NDP>NMP. When physiological polyamines were added to the purified enzyme in vitro, spermine or spermidine activated ODC by 140 or 40%, respectively, while putrescine caused a small inhibition. The basic amino acids lysine and arginine were competitive inhibitors of ODC, while histidine did not affect the enzyme activity. Among the phosphoamino acids tested, phosphoserine was the most effective activator of purified ODC. Polyamines added at high concentration to the medium resulted in a delay or in a complete inhibition of the growth of T. thermophilus, and in a decrease of the specific activity of ornithine decarboxylase. The decrease of ODC activity resulted from the appearance of a non-competitive inhibitor of ODC, the antizyme (Az). The T. thermophilus antizyme was purified by an ODC-Sepharose affinity column chromatography, as well as by immunoprecipitation using antibodies raised against the E. coli antizyme. The antizyme of E. coli inhibited the ODC of T. thermophilus, and vice versa. The fragment of amino acids 56-292 of the E. coli antizyme, produced as a fusion protein of glutathione S-transferase, did not inhibit the ODC of E. coli or T. thermophilus.  相似文献   

4.
Agents such as dimethylsulfoxide, N,N′-dimethylformamide and bisacetyldiaminopentane that induce erythroid differentiation of Friend leukemia cells, cause a rapid increase in ornithine decarboxylase (EC 4.1.1.17) activity in intact cells during the ‘latent’ period preceding the accumulation of hemoglobin-containing cells. Blockage of erythroid differentiation with 5-bromo-2′-deoxyuridine did not prevent these alterations in enzyme activity. Addition of each chemical inducer in the extracts of these cells stimulate the basal levels of ornithine decarboxylase activity. These data indicate that the chemical inducers of differentiation modify the normal pattern of ornithine decarboxylase activity in this system.  相似文献   

5.
Ornithine decarboxylase (ODC, EC 4.1.1.17) was studied in crude extracts of parenchyma slices of dormant tubers activated for 12 h, tuber shoots and shoot apices. It was highest in shoot apices. The enzyme activity was measured by the production of 14CO2 from labelled ornithine; Vmax was 450 nmol (mg protein)-1h-1, Km for ornithine and pyridoxal phosphate were, respectively, 30 m M and 5μ M . Only when partially purified, the 14CO2 production was inhibited by α-difluoromethylornithine, while in crude extracts dithiothreitol was inhibitory. Ornithine and arginine decarboxylase (ADC, EC 4.1.1.19) activities from parenchyma tubers were not greatly altered by exogenously supplemented ornithine, even though its endogenous pool increased. Exogenously supplemented arginine enhanced ornithine decarboxylase activity, whereas putrescine decreased it slightly. The possibility of artifactual activities in the crude extract is also discussed.  相似文献   

6.
In this work we studied putative ornithine decarboxylase activity (ODC, EC 4.1.1.17) in leaves of Arabidopsis thaliana L. (ecotype Columbia) plants at non-flowering stage (about 21 d of culture). Putative ODC activity was higher in the particulate than in the soluble fraction and activity was pH-dependent, increasing linearly with the pH. Inclusion of 10 mM arginine in the assay showed that the incidence of ornithine transcarbamoylase activity (EC 2.1.3.3) accounted for about 35% in the particulate fraction, but that its contribution was negligible in the soluble fraction. Increasing concentrations of the irreversible inhibitor α-difluoromethylornithine (DFMO) progressively inhibited putative ODC activity with a 40% inhibition at 20 mM DFMO. Taking into consideration the incidence of ornithine transcarbamoylase activity, the total inhibition of putative ODC activity was of about 75%. Fractionation experiments permitted measurement of putative ODC activity in the nuclei- and chloroplast-enriched fractions. The assays performed on membranes and stromal fractions isolated from gradient purified chloroplasts showed that the enzyme activity was associated almost totally with the plastid membranes.  相似文献   

7.
DL-alpha-Difluoromethylornithine, an enzyme-activated irreversible inhibitor of eukaryotic ornithine decarboxylase and consequently of putrescine biosynthesis, inhibited ornithine decarboxylase in enzyme extracts from Pseudomonas aeruginosa in a time-dependent manner t1/2 1 min, and also effectively blocked the enzyme activity in situ in the cell. Difluoromethylornithine, however, had no effect on the activity of ornithine decarboxylase assayed in enzyme extracts from either Escherichia coli or Klebsiella pneumoniae. However, the presence of the inhibitor in cell cultures did partially lower ornithine decarboxylase activity intracellularly in E. coli. Any decrease in the intracellular ornithine decarboxylase activity observed in E. coli and Pseudomonas was accompanied by a concomitant increase in arginine decarboxylase activity, arguing for a co-ordinated control of putrescine biosynthesis in these cells.  相似文献   

8.
The biosynthetic pathways for putrescine (Put) in Vibrio parahaemolyticus were delineated by measuring activities of the enzymes which would be involved in its biosynthesis. Experiments with labeled arginine and ornithine revealed that both of these amino acids were converted into Put by intact cells. The activities of three enzymes, arginine decarboxylase (ADC), ornithine decarboxylase (ODC), and agmatine ureohydrolase (AUH), were detected in cell extracts. ADC and ODC of V. parahaemolyticus were similar in the following properties to the corresponding enzymes of Escherichia coli: 1) both decarboxylases showed a pH optimum at 8.25 and required pyridoxal phosphate and dithiothreitol for full activity; 2) while ODC was considerably activated by GTP, ADC was only slightly; 3) both decarboxylases were inhibited by polyamines; 4) ADC was inhibited by difluoromethylarginine, a potent inhibitor of bacterial ADC. However, in contrast to the corresponding enzymes of E. coli, the V. parahaemolyticus ADC showed no requirement for Mg2+, and the AUH was active over a wide pH range of 8.5-9.5 with a maximum at pH 9.0. Furthermore, in all 6 strains tested, the activity of ADC was obviously high compared with that of ODC, and AUH was present with a relatively high activity. Cultivation of these strains at a suboptimal NaCl concentration (0.5%) resulted in a pronounced increase in both ADC and AUH activities. These observations suggest that the important pathway for Put biosynthesis in V. parahaemolyticus is the decarboxylation of arginine by ADC and the subsequent hydrolysis of its product, agmatine, by AUH.  相似文献   

9.
Ornithine decarboxylase, the rate-limiting enzyme in the polyamine biosynthetic pathway has been purified 7,600 fold from Plasmodium falciparum by affinity chromatography on a pyridoxamine phosphate column. The partially purified enzyme was specifically tagged with radioactive DL-alpha-difluoromethylornithine and subjected to polyacrylamide gel electrophoresis under denaturing conditions. A major protein band of 49 kilodalton was obtained while with the purified mouse enzyme, a typical 53 kilodalton band, was observed. The catalytic activity of parasite enzyme was dependent on pyridoxal 5'-phosphate and was optimal at pH 8.0. The apparent Michaelis constant for L-ornithine was 52 microM. DL-alpha-difluoromethylornithine efficiently and irreversibly inhibited ornithine decarboxylase activity from P. falciparum grown in vitro or Plasmodium berghei grown in vivo. The Ki of the human malarial enzyme for this inhibitor was 16 microM. Ornithine decarboxylase activity in P. falciparum cultures was rapidly lost upon exposure to the direct product, putrescine. Despite the profound inhibition of protein synthesis with cycloheximide in vitro, parasite enzyme activity was only slightly reduced by 75 min of treatment, suggesting a relatively long half-life for the malarial enzyme. Ornithine decarboxylase activity from P. falciparum and P. berghei was not eliminated by antiserum prepared against purified mouse enzyme. Furthermore, RNA or DNA extracted from P. falciparum failed to hybridize to a mouse ornithine decarboxylase cDNA probe. These results suggest that ODC from P. falciparum bears some structural differences as compared to the mammalian enzyme.  相似文献   

10.
When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.  相似文献   

11.
Injections of 1,3-diaminopropane, a close structural analogue of putrescine (1,4-diaminobutane), into partially hepatectomized rats powerfully inhibited ornithine decarboxylase (EC 4.1.1.17) activity in the regenerating liver in vivo. The compound did not have any effect on the enzyme activity in vitro (under assay conditions employed) but appeared to exert an inhibitory influence on the synthesis of ornithine decarboxylase itself.Repeated injections of diaminopropane into rats after partial hepatectomy, starting at the time of the operation and continued until 33 h postoperatively, markedly diminished the stimulation of ornithine decarboxylase activity in the regenerating liver remnant, and completely prevented the increases in hepatic spermidine concentration normally occurring in response to partial hepatectomy.Treatment of the rats with diaminopropane did not depress the activity of adenosylmethionine decarboxylase (EC 4.1.1.50) in the regenerating liver. Nor did the compound have any effect, whatsoever, on the activity of spermidine synthase (EC 2.5.1.16) in vitro, thus obiviously proving that the increased accumulation of liver spermidine after partial hepatectomy primarily depends upon a stimulation of ornithine decarboxylase activity and a concomitant accumulation of putrescine. The results also showed that 1,3-diamino-propane could not replace putrescine in the synthesis of higher polyamines in rat liver. The inhibition of ornithine decarboxylase by diaminopropane thus appears to represent “gratuitous” repression of polyamine biosynthesis and might conceivably be used for studies devoted to the elucidation of the physiological functions of natural polyamines.  相似文献   

12.
Intratesticular injection with arginine vasopressin caused stimulation of ornithine decarboxylase activity in the testes of immature rats. The increase in ornithine decarboxylase activity in response to arginine vasopressin was dose and time dependent. Maximal stimulation of ornithine decarboxylase activity occurred at 2 h after injection with 0.1 micrograms of arginine vasopressin. It was observed that stimulation of ornithine decarboxylase activity occurred in seminiferous tubules and in Leydig cells of the testis in response to arginine vasopressin.  相似文献   

13.
Treatment of tobacco liquid suspension cultures with methylglyoxal bis(guanylhydrazone) (MGBG) an inhibitor of S-adenosylmethionine decarboxylase, resulted in a dramatic overproduction of a 35-kDa peptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Malmberg, R.L., and McIndoo, J. (1983) Nature 305, 623-625). MGBG treatment also resulted in a 20-fold increase in the activity of S-adenosylmethionine decarboxylase. Purification of S-adenosylmethionine decarboxylase from MGBG-treated cultures revealed that the overproduced 35-kDa peptide and S-adenosylmethionine decarboxylase are identical. Precursor incorporation experiments using [3H] methionine and [35S]methionine revealed that MGBG does not induce any increased synthesis of S-adenosylmethionine decarboxylase but rather stabilizes the protein to proteolytic degradation. The half-life of the enzyme activity was increased when MGBG was present in the growth medium. In addition to stabilizing S-adenosylmethionine decarboxylase, MGBG also resulted in the rapid and specific loss of arginine decarboxylase activity with little effect ornithine decarboxylase. The kinetics of this effect suggest that arginine decarboxylase synthesis was rapidly inhibited by MGBG. Exogenously added polyamines had little effect on ornithine decarboxylase, whereas S-adenosylmethionine and arginine decarboxylase activities rapidly diminished with added spermidine or spermine. Finally, inhibition of ornithine decarboxylase was lethal to the cultures, whereas inhibition of arginine decarboxylase was only lethal during initiation of growth in suspension culture.  相似文献   

14.
Both the polyamine content and the route of acquisition of polyamines by Rickettsia prowazekii, an obligate intracellular parasitic bacterium, were determined. The rickettsiae grew normally in an ornithine decarboxylase mutant of the Chinese hamster ovary (C55.7) cell line whether or not putrescine, which this host cell required in order to grow, was present. The rickettsiae contained approximately 6 mM putrescine, 5 mM spermidine, and 3 mM spermine when cultured in the presence or absence of putrescine. Neither the transport of putrescine and spermidine by the rickettsiae nor a measurable rickettsial ornithine decarboxylase activity could be demonstrated. However, we demonstrated the de novo synthesis of polyamines from arginine by the rickettsiae. Arginine decarboxylase activity (29 pmol of 14CO2 released per h per 10(8) rickettsiae) was measured in the rickettsiae growing within their host cell. A markedly lower level of this enzymatic activity was observed in cell extracts of R. prowazekii and could be completely inhibited with 1 mM difluoromethylarginine, an irreversible inhibitor of the enzyme. R. prowazekii failed to grow in C55.7 cells that had been cultured in the presence of 1 mM difluoromethylarginine. After rickettsiae were grown in C55.7 in the presence of labeled arginine, the specific activities of arginine in the host cell cytoplasm and polyamines in the rickettsiae were measured; these measurements indicated that 100% of the total polyamine content of R. prowazekii was derived from arginine.  相似文献   

15.
Rat heart ornithine decarboxylase activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase had a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2? on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect oupon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rates to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

16.
The effect of K-deficiency on the putrescine biosynthetic enzyme, arginine decarboxylase (ADC), was investigated by growing oat (Avena sativa L. var Victory) plants on a low-K, but otherwise complete nutrient medium in washed quartz sand for up to 18 days. Enzyme activity rose as the concentration of KCl was dropped to 0.6 millimolar or below. However, growth was not inhibited significantly at 0.6 millimolar KCl. ADC activity increased in the whole shoot of K-deficient oats throughout the period of 6 to 18 days, but remained constant in normal plants. At 18 days, ADC activity in entire K-deficient shoots was 6 times greater than in normal shoots, while in the first (oldest) leaf, ADC specific activity increased to more than 30 times the specific activity in the first leaf of normal plants. This effect was due to a moderate rise in total ADC activity in the first leaf between 6 and 18 days, accompanied by a significant decline in protein content. Replacing K+ with Na+ or Li+ significantly inhibited the increase in ADC activity in K-deficient oats, while Rb+ depressed the specific activity to a level below that in normal plants. An alternative putrescine biosynthetic enzyme, ornithine decarboxylase, was also examined. The specific activity of a pelletable form of the enzyme was increased 2-fold in the shoots of K-deficient oats.  相似文献   

17.
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.

No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.

In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  相似文献   

18.
Several Acetobacteria contained large amounts of spermine in addition to the putrescine and spermidine, which are the polyamines normally found in prokaryotes. A spermine synthase present in cell extracts of these Acetobacteria is the first example of this enzyme in prokaryotes. Dicyclohexylammonium sulphate inhibited both spermidine synthase and spermine synthase activities in Acetobacteria. Their ornithine decarboxylase was not stimulated by GTP nor inhibited by ppGpp and pppGpp (magic spots I and II) in contrast to ornithine decarboxylase of nearly all bacteria studied so far. However, their S-adenosyl-L-methionine decarboxylase resembled other prokaryotic adenosylmethionine decarboxylases in requiring Mg2+ ions in vitro for full activity.  相似文献   

19.
The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.  相似文献   

20.
Ornithine decarboxylase activity in insulin-deficient states   总被引:1,自引:1,他引:0       下载免费PDF全文
The activity of ornithine decarboxylase, the rate-controlling enzyme in polyamine biosynthesis, was determined in tissues of normal control rats and rats made diabetic with streptozotocin. In untreated diabetic rats fed ad libitum, ornithine decarboxylase activity was markedly diminished in liver, skeletal muscle, heart and thymus. Ornithine decarboxylase was not diminished in a comparable group of diabetic rats maintained on insulin. Starvation for 48h decreased ornithine decarboxylase activity to very low values in tissues of both normal and diabetic rats. In the normal group, refeeding caused a biphasic increase in liver ornithine decarboxylase; there was a 20-fold increase in activity at 3h followed by a decrease in activity, and a second peak between 9 and 24h. Increases in ornithine decarboxylase in skeletal muscle, heart and thymus were not evident until after 24–48h of refeeding, and only a single increase occurred. The increase in liver ornithine decarboxylase in diabetic rats was greater than in normal rats after 3h of refeeding, but there was no second peak. In peripheral tissues, the increase in ornithine decarboxylase with refeeding was diminished. Skeletal-muscle ornithine decarboxylase is induced more rapidly when meal-fed rats are refed after a period without food. Refeeding these rats after a 48h period without food caused a 5-fold increase in ornithine decarboxylase in skeletal muscle at 3h in control rats but failed to increase activity in diabetic rats. When insulin was administered alone or together with food to the diabetic rats, muscle ornithine decarboxylase increased to activities even higher than in the refed controls. In conclusion, these findings indicate that the regulation of ornithine decarboxylase in many tissues is grossly impaired in diabetes and starvation. They also suggest that polyamine formation in vivo is an integral component of the growth-promoting effect of insulin or some factor dependent on insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号