首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemically-induced sister-chromatid exchange (SCE) was measured in vivo in bone marrow of Chinese hamsters. Chemicals were administered either intraperitoneally or orally and increased SCE frequencies were noted with 6 of 6 direct-acting genotoxins and with 9 of 14 activation-dependent genotoxins. Metronidazole, o-toluidine, 4-nitro-o-phenylenediamine and 2-nitro-p-phenylenediamine, compounds which have shown either mutagenic or carcinogenic activity, did not induce SCE in vivo, 4 non-genotoxins and 4 different control treatments did not induce SCE. The results show that the in vivo SCE method may be useful for the identification of genotoxins and that the outcome of the test is, for certain chemicals, dependent upon the route of exposure.  相似文献   

2.
To provide further background data for the somatic mutation and/or recombination tests in Drosophila melanogaster, we have evaluated the responses in 3 assyas (zeste-white, white-ivory and wing spot) of 5 chemicals classified by the U.S. National Toxicology Program (NTP) as genotoxic non-carcinogens (or ambiguous). The selected compounds were 2-chloromethylpyridine, 1-nitronaphthalene, 4-nitro-o-phenylenediamine, 3-nitropropionic acid and p-phenylenediamine. Our results show that all the compounds tested produce significant increases in the frequency of mutant clones, in at least one of the assays, p-phenylenediamine being the compound which present a clearer mutagenic activity, and the wing spot test, the assay the detects more genotoxic compounds (4/5).  相似文献   

3.
The in vitro unscheduled DNA synthesis (UDS) assay was evaluated for inclusion in a battery of assays used at The Upjohn Company for evaluation of lead compounds in the development of new and existing drug entities. This evaluation process encompassed aspects of the isolation of hepatocytes and tests of reference mutagens and genotoxins. The flow rate of perfusion solutions and their temperatures were critical in the isolation of high viability hepatocytes in good yield. The attachment of freshly isolated hepatocytes to coverslips was greatly enhanced by coating the coverslips with type III collagen. Results of testing 12 known genotoxic agents (UV light, cyclophosphamide, 7,12-dimethylbenzanthracene, dimethyl-nitrosamine, diethylnitrosamine, 2-acetylaminofluorene, benzo[a]pyrene, methyl methanesulfonate, ethyl methanesulfonate, N-propyl-N′-nitro-N-nitrosoguanidine, benzidine and 4-aminobiphenyl) were in agreement with the literature. The use of X-ray did not induce unscheduled DNA synthesis in hepatocytes. This latter finding draws attention to the inability of this assay to detect agents which result in ‘short-patch’ repair of damage.  相似文献   

4.
In a comparative study, henzo[a]pyrene (BaP), cyclophosphamide (CP), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and tetrachloroethylene (PER) were tested for their ability to induce genotoxic effects in the single cell gel (SCG) test and the sister-chromatid exchange (SCE) test with human blood cells. MNNG as well as S9 mix activated BaP- and CP-induced DNA effects in both tests in a dose-dependent manner. While the range of concentrations which induced DNA migration or SCE was the same for MNNG and for Bap, much higher CP concentrations were necessary for a positive response in the SCG test than in the SCE test. PER was tested in the absence and in the presence of S9 mix and neither induced DNA migration nor increased SCE frequencies. In these experiments, a clear cytotoxic effect of PER was observed. To investigate a possible influence of DNA repair on the effects in the SCG test, cells were treated for 2 h and further incubated for 1 h after removal of the test substance. This procedure caused a clear decrease in induced DNA migration in experiments with Bap and CP, whereas no reduction was found with MNNG. This modified protocol did not lead to the detection of DNA effects after treatment with PER. The results indicate that the SCG test responds to various DNA lesions and does not seem to be sensitive to non-genotoxic cell killing. Its sensitivity obviously depends on the type(s) of induced DNA lesions and the effects can be modified by DNA repair processes in a complex manner. For the detection of genotoxic properties of chemicals with the in vitro SCG test, a single evaluation at the end of the exposure period seems to be sufficient.  相似文献   

5.
Although α-tocopherol (α-TOC) is the most biologically active form of vitamin E and is found at high levels in plasma, γ-tocopherol (γ-TOC) has also been found to be a powerful antioxidant in vitro and constitutes up to 70% of the dietary intake of TOC. Low plasma levels of γ-TOC and a high α-TOC:γ-TOC ratio may be associated with coronary heart disease, suggesting that there may be a positive protective role for the γ-form of TOC. In this study the ability of different forms of vitamin E to protect against sister chromatid exchanges (SCE) induced by either hydrogen peroxide or menadione was investigated. Chinese hamster V79 cells were pre-treated with 10 μM TOC for 24 h, and then challenged with a genotoxin. After a 24 h pre-treatment, there was a greater incorporation of γ-TOC (319.8 ± 66.2 ng/106 cells) into V79 cells compared to α-TOC (66.9 ± 6.4 ng/106 cells). γ-TOC did not protect the cells against SCE induced by either hydrogen peroxide or menadione, α-TOC acetate was partially protective against both genotoxins, whereas α-TOC completely abolished the oxidant induced SCE. These results demonstrate that, despite a greater incorporation of γ-TOC into V79 cells, α-TOC but not γ-TOC was more effective at inhibiting oxidatively-induced SCE in V79 cells.  相似文献   

6.
Although alpha-tocopherol (alpha-TOC) is the most biologically active form of vitamin E and is found at high levels in plasma, gamma-tocopherol (gamma-TOC) has also been found to be a powerful antioxidant in vitro and constitutes up to 70% of the dietary intake of TOC. Low plasma levels of gamma-TOC and a high alpha-TOC:gamma-TOC ratio may be associated with coronary heart disease, suggesting that there may be a positive protective role for the gamma-form of TOC. In this study the ability of different forms of vitamin E to protect against sister chromatid exchanges (SCE) induced by either hydrogen peroxide or menadione was investigated. Chinese hamster V79 cells were pre-treated with 10 microM TOC for 24 h, and then challenged with a genotoxin. After a 24 h pre-treatment, there was a greater incorporation of gamma-TOC (319.8 +/- 66.2 ng/10(6) cells) into V79 cells compared to alpha-TOC (66.9 +/- 6.4 ng/10(6) cells). Gamma-TOC did not protect the cells against SCE induced by either hydrogen peroxide or menadione, alpha-TOC acetate was partially protective against both genotoxins, whereas alpha-TOC completely abolished the oxidant induced SCE. These results demonstrate that, despite a greater incorporation of gamma-TOC into V79 cells, alpha-TOC but not gamma-TOC was more effective at inhibiting oxidatively-induced SCE in V79 cells.  相似文献   

7.
Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of adult C57BL6 wild-type mice treated with a single systemic dose of MAM acetate display DNA damage (O 6-methyldeoxyguanosine lesions, O 6-mG) that remains constant up to 7 days post-treatment. By contrast, MAM-treated mice lacking a functional gene encoding the DNA repair enzyme O 6-mG DNA methyltransferase (MGMT) showed elevated O 6-mG DNA damage starting at 48 hours post-treatment. The DNA damage was linked to changes in the expression of genes in cell-signaling pathways associated with cancer, human neurodegenerative disease, and neurodevelopmental disorders. These data are consistent with the established developmental neurotoxic and carcinogenic properties of MAM in rodents. They also support the hypothesis that early-life exposure to MAM-glucoside (cycasin) has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for food or medicine, or both. These findings suggest environmental genotoxins, specifically MAM, target common pathways involved in neurodegeneration and cancer, the outcome depending on whether the cell can divide (cancer) or not (neurodegeneration). Exposure to MAM-related environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimer''s disease.  相似文献   

8.
The cytotoxicity of SN1-type alkylating agents such as N-methyl-N′-nitrosourea (MNU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), or the cancer chemotherapeutics temozolomide, dacarbazine and streptozotocin has been ascribed to the persistence of O6-methylguanine (meG) in genomic DNA. One hypothesis posits that meG toxicity is caused by futile attempts of the mismatch repair (MMR) system to process meG/C or meG/T mispairs arising during replication, while an alternative proposal suggests that the latter lesions activate DNA damage signaling, cell cycle arrest and apoptosis directly. Attempts to elucidate the molecular mechanism of meG-induced cell killing in vivo have been hampered by the fact that the above reagents induce several types of modifications in genomic DNA, which are processed by different repair pathways. In contrast, defined substrates studied in vitro did not undergo replication. We set out to re-examine this phenomenon in replication-competent Xenopus laevis egg extracts, using either phagemid substrates containing a single meG residue, or methylated sperm chromatin. Our findings provide further support for the futile cycling hypothesis.  相似文献   

9.
The alkyltransferase-like (ATL) proteins contain primary sequence motifs resembling those found in DNA repair O6-alkylguanine-DNA alkyltransferase proteins. However, in the putative active site of ATL proteins, a tryptophan (W83) residue replaces the cysteine at the known active site of alkyltransferases. The Escherichia coli atl gene was expressed as a fusion protein and purified. Neither ATL nor C83 or A83 mutants transferred [3H] from [3H]-methylated DNA to themselves, and the levels of O6-methyl guanine (O6-meG) in substrate DNA were not affected by ATL. However, ATL inhibited the transfer of methyl groups to human alkyltransferase (MGMT). Inhibition was reduced by prolonged incubation in the presence of MGMT, again suggesting that O6-meG in the substrate is not changed by ATL. Gel-shift assays show that ATL binds to short single- or double-stranded oligonucleotides containing O6-meG, but not to oligonucleotides containing 8-oxoguanine, ethenoadenine, 5-hydroxycytosine or O4-methylthymine. There was no evidence of demethylation of O6-meG or of glycosylase or endonuclease activity. Overexpression of ATL in E.coli increased, or did not affect, the toxicity of N-methyl-N′-nitro-N-nitrosoguanidine in an alklyltransferase-proficient and -deficient strain, respectively. These results suggest that ATL may act as a damage sensor that flags O6-meG and possibly other O6-alkylation lesions for processing by other repair pathways.  相似文献   

10.
A novel series of benzimidazole derivatives were prepared starting from o-phenylenediamine and 4-nitro-o-phenylenediamine with iminoester hydrochlorides. Acidic proton in benzimidazole was exchanged with ethyl bromoacetate, then ethyl ester group was transformed into hydrazide group. Cyclization using CS2/KOH leads to the corresponding 1,3,4-oxadiazole derivative, which was treated with phenyl isothiocyanate resulted in carbothioamide group, respectively. As the target compounds, triazole derivative was obtained under basic condition and thiadiazole derivative was obtained under acidic condition from cyclization of carbothioamide group. Most reactions were conducted using both the microwave and conventional methods to compare yields and reaction times. All compounds obtained in this study were investigated for α-glucosidase inhibitor activity. Compounds 6a, 8a, 4b, 5b, 6b and 7b were potent inhibitors with IC50 values ranging from 10.49 to 158.2 μM. This has described a new class of α-glucosidase inhibitors. Molecular docking studies were done for all compounds to identify important binding modes responsible for inhibition activity of α-glucosidase.  相似文献   

11.
Benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), dibenzo[a,i]pyrene (DBP), and dibenz[a,h]acridine (DBAC) are by-products found in many industrial wastes and emissions. Workers in the related occupational settings are potentially exposed to these substances through inhalation. In the present study, induction of DNA adducts in vivo by these chemicals was investigated using 32P-postlabeling analysis in the rat-lung-cell system. The potency of DNA-adduct inducing activity was also compared to that of two cytogenetic endpoints i.e., sister-chromatid exchange (SCE) and micronucleus formation. Via intratracheal instillation, male CD rats (6/group) were dosed 3 times with BA, DBA, DBP or DBAC in a 24-h interval. Lung cells were enzymatically separated and used to determine the frequency of DNA adducts, SCE and micronuclei. Results show that all 4 test compounds induced DNA adducts, SCEs, and micronuclei in the rat-lung cell in vivo and that the postlabeling DNA adduct assay detected genotoxic activity at lower dose levels than the two cytogenetic assays. These findings suggest that BA, DBA, DBP or DBAC are rat pulmonary genetoxicants and the DNA-adduct assay is more sensitive than SCE or micronucleus assays for detecting the pulmonary genotoxicity of these industrial PAHs in the in vivo rat-lung-cell system.  相似文献   

12.
Soybeans fermented with either Phellinus igniarius or Agrocybe cylindracea inhibited the mutagenicity of the directly-acting mutagens: 4-nitro-o-phenylenediamine on Salmonella typhimurium strain TA 98 and NaN3 on S. typhimurium strain TA 100; and indirectly-acting mutagens, 2-aminofluorene using strain TA 98 and benzo[a]pyrene using strain TA 100, in the presence of a supernatant solution from mammalian hepatic microsomes.  相似文献   

13.
Ciprofloxacin (CF), a fluoroquinolone widely used as a potent antimicrobial drug, was evaluated in vivo in mouse bone marrow cells for its ability to induce clastogenicity and DNA damage in terms of increased sister-chromatid exchange (SCE) frequencies. Doses of 0.6, 6 and 20 mg/kg body weight of CF given intraperitoneally induced a positive dose-dependent significant clastogenicity (trend test α ⩽ 0.05), though the effects were not specific for specific phases of the cell cycle.The DNA-damaging effect observed as increased SCE frequencies using doses of 0.15, 0.30, 0.60, 1.2 and 6 mg/kg body weight showed a significant dose-dependent increase (trend test α ⩽ 0.05; lowest effective concentration 1.2 mg/kg of body weight).Compared to a potent eukaryotic DNA topoisomerase type II poison, etoposide (VP-16, 0.5, 1 and 5 mg/kg body weight, given intraperitoneally), ciprofloxacin produced comparable dose-dependent SCE frequency increases. Ciprofloxacin was postulated to be specific for the target DNA gyrase, the prokaryotic homologue of DNA topoisomerase type II enzyme. The present paper along with the existing earlier data strongly suggest that topoisomerase type II and DNA gyrase are physiological targets for the drug action. In view of the present significant in vivo mammalian DNA topoisomerase type II-mediated genotoxicity and clastogenicity data, ciprofloxacin should be administered with caution.  相似文献   

14.
In contrast to the "validation" of short-term in vitro genotoxicity assays by concordance with the rodent cancer bioassay, the present report describes the multiple replication of 4 short-term tests with V79 cells (micronucleus assay, MN; sister-chromatid exchange, SCE; ouabain resistance. OUR; and thioguanine resistance, TGR) within the same assay system following exposure to each of two genotoxins, ethyl methanesulfonate (direct acting) and 7,12-dimethylbenz[a]anthracene (indirect acting). Reproducibility, proportion of genotoxins correctly identified, and proportion of non-genotoxins correctly identified by each test were each determined statistically. Decision rules were formulated to declare a positive response in each assay, and overall accuracy of each was determined. Statistical analysis of the data, obtained under standardized test conditions, showed that for these two chemicals SCE identified 100% of genotoxins and 86% of non-genotoxins, with overall accuracy of prediction of 93%; TGR identified 98% of genotoxins and 74% of non-genotoxins, with overall accuracy of 86%; MN identified 78% of genotoxins and 84% of non-genotoxins, with overall accuracy of 81%; while OUR indicated 100% of genotoxins, but only 50% of non-genotoxins, and only 76% overall accuracy. The results suggested that the best overall accuracy of classification with the V79 assay system could be achieved by measurement of SCE in combination with thioguanine resistance.  相似文献   

15.
C57B1/6 and DBA/2 mice, strains in which there is marked induction of hepatic monooxygenase activity by phenobarbital, were tested for in vivo sister-chromatid exchange (SCE) formation in response to cyclophosphamide, an agent metabolized by this inducible enzyme system. Baseline SCE frequencies were between 4 and 6 SCEs/cell in regerating liver and bone marrow of both strains of mice. Administration of cyclophosphamide (5 mg/kg) led to an increase of nearly 8 SCEs/cell in both tissues of C57B1/6 mice and an increase of more than 10 SCEs/cell in DBA/2 mice. Prior exposure to phenobarbital induced p-chloromethylaniline demethylase activity in regenerating liver of both mouse strains approx. 6-fold, but the changes in measured SCE frequencies were not significantly different from those obtained in the absence of enzyme induction. These results, together with our previous observation that induction of by 3-methylcholanthrene of benzo[a]pyrene hydroxylase activity in the same mouse strains was not accompanied by a comparable change in benzo[a]pyrene-induced SCE formation, reinforce the impression that simple assays of differences in mixed function oxidase activities may not necessarily be good predictors of hereditary differences in the response to genetic damage by procarcinogens which are presumed to be metabolized by these enzymes.  相似文献   

16.
The mutagenicity of diethylstilbestrol (DES) in V79 Chinese hamster cells was examined under a variety of conditions. DES over a concentration range 0.01–10 μg/ml failed to induce any increase above the spontaneous frequency of 6-thioguanine-resistant V79 cells. The effect of varying the expression time after treatment in the mutation assay from 3 to 9 days was studied and DES was nonmutagenic at all time points, while N-methyl-N′-nitro-N-nitrosoguanidine was highly mutagenic with a peak response after a 5–7 day expression time. The mutagenicity of benzo[a]pyrene and DES, both of which induce morphological and neoplastic transformation of Syrian hamster embryo (SHE) cells, was tested by cocultivating V79 cells with SHE cells for possible metabolic activation of the chemicals. Neither compound was mutagenic to V79 cells in the absence of SHE cells. Benzo[a]pyrene, but not DES, was mutagenic to V79 cells cocultivated with SHE cells. These results support the observation that DES can induce cell transformation under conditions that do not result in any measurable gene mutations. Moreover, the ability of DES to enhance the recovery of 6-thioguanine-resistant mutations was studied by determining the ability of DES to inhibit metabolic cooperation of V79 cells. Unlike the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate, DES was a weak or inactive inhibitor of metabolic cooperation.  相似文献   

17.
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his35′ and his33::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his33::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE.  相似文献   

18.
Molinate and butylate treatments for 4 h of Vicia faba root tip meristems, showed that both thiocarbamate herbicides increased significantly SCE frequency. Direct treatments of molinate and butylate on human lymphocytes applied 24 h after the beginning of culture did not induce SCE. When S10 extracts of the Vicia roots, treated for 4 h with molinate and butylate (in vivo activation) were added to lymphocytes (24 h after of the beginning of culture), SCE were induced in a concentration-response manner. The in vitro assays, in which molinate and butylate was added at 48 h lymphocyte cultures for 4 h, showed a negative response, however, in the treatment where the S10 metabolic mix was added the SCE frequencies were significantly different to the control, and the concentration-response relationship was not observed with molinate, but it was obtained with butylate. The results showed that both herbicides needed the V. faba metabolism to produce SCE in human lymphocyte culture.  相似文献   

19.
The DNA adduct O6-methylguanine (O6MeG) induced by environmental genotoxins and anticancer drugs is a highly mutagenic, genotoxic and apoptotic lesion. Apoptosis induced by O6MeG requires mismatch repair (MMR) and proliferation. Models of O6MeG-triggered cell death postulate that O6MeG/T mispairs activate MMR giving rise to either direct genotoxic signaling or secondary lesions that trigger apoptotic signaling in the 2nd replication cycle. To test these hypotheses, we used a highly synchronized cell system competent and deficient for the repair of O6MeG adducts, which were induced by the SN1 methylating agent N-methyl-N’-nitro-N-nitrosoguanidine (MNNG). We show that DNA double-strand breaks (DSBs) are formed in response to O6MeG at high level in the 2nd S/G2-phase of the cell cycle. This is accompanied by ATR and Chk1 phosphorylation, G2/M arrest and late caspase activation. Although cells undergo apoptosis out of the 2nd G2/M-phase, the majority of them recovers and undergoes apoptosis after passing through additional replication cycles. The late apoptotic effects were completely abolished by O6-methylguanine-DNA methyltransferase, indicating that non-repaired O6MeG is carried over into subsequent generations, eliciting there a late apoptotic response. We also demonstrate that with a low, non-toxic dose of MNNG the passage of cells through the 1st and 2nd S-phase is not delayed, although the dose is able to induce excessive sister chromatid exchanges. This suggests that a significant amount of O6MeG can be tolerated by recombination, which is a fast process preventing from S-phase blockage, DSB formation and cell death.  相似文献   

20.
Pemetrexed (PMX) is an antineoplastic antifolate used in the treatment of non-small cell lung cancer, mesothelioma and several types of neoplasms. Its toxicity in tumor cells has been linked with the potent inhibition of thymidylate synthase, dihydrofolate reductase and glycinamide ribonucleotide formyl transferase, and subsequent depletion of both purine and pyrimidine nucleotides. However, cytogenetic toxicity of PMX in non-diseased cells has not been adequately studied; despite the increasing data on the DNA-damaging potential of antineoplastic agents on normal cells. In the present study, the genotoxic potential of PMX was evaluated in peripheral blood lymphocytes obtained from healthy human subjects using chromosome aberration (CA), sister chromatid exchange (SCE) and micronucleus (MN) assays as the cytogenetic damage markers. Human peripheral blood lymphocytes were exposed to four different concentrations (25, 50, 75 and 100 μg/mL) of PMX for 24- and 48-h treatment periods. PMX significantly increased the formation of CA in 24-h treatment, but not in 48-h treatment. PMX did not increase the mean SCE frequency in 24- and 48-h treatment periods; however, there was a striking increase (although not statistically significant, p > 0.05) in the number of SCEs at 25 μg/mL (24- and 48-h treatment) and 50 μg/mL (24-h treatment) due to an increase of SCE at the single-cell level. Interestingly, PMX did not induce MN formation in either 24- or 48-h treatment periods. PMX strongly decreased the mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in 24- and 48-h treatment periods. Our results suggest that PMX has a potent cytotoxic effect against human peripheral blood lymphocytes at concentrations which are reached in vivo in the blood plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号