共查询到20条相似文献,搜索用时 0 毫秒
1.
Damaged and misfolded proteins accumulate during the aging process, impairing cell function and tissue homeostasis. These perturbations to protein homeostasis (proteostasis) are hallmarks of age-related neurodegenerative disorders such as Alzheimer’s, Parkinson’s or Huntington’s disease. Damaged proteins are degraded by cellular clearance mechanisms such as the proteasome, a key component of the proteostasis network. Proteasome activity declines during aging, and proteasomal dysfunction is associated with late-onset disorders. Modulation of proteasome activity extends lifespan and protects organisms from symptoms associated with proteostasis disorders. Here we review the links between proteasome activity, aging and neurodegeneration. Additionally, strategies to modulate proteasome activity and delay the onset of diseases associated to proteasomal dysfunction are discussed herein. 相似文献
2.
Anna Oczkowska Wojciech Kozubski Margarita Lianeri Jolanta Dorszewska 《Current Genomics》2014,15(1):18-27
Knowledge on the genetics of movement disorders has advanced significantly in recent years. It is now recognized that disorders of the basal ganglia have genetic basis and it is suggested that molecular genetic data will provide clues to the pathophysiology of normal and abnormal motor control. Progress in molecular genetic studies, leading to the detection of genetic mutations and loci, has contributed to the understanding of mechanisms of neurodegeneration and has helped clarify the pathogenesis of some neurodegenerative diseases. Molecular studies have also found application in the diagnosis of neurodegenerative diseases, increasing the range of genetic counseling and enabling a more accurate diagno-sis. It seems that understanding pathogenic processes and the significant role of genetics has led to many experiments that may in the future will result in more effective treatment of such diseases as Parkinson’s or Huntington’s. Currently used molecular diagnostics based on DNA analysis can identify 9 neurodegenerative diseases, including spinal cerebellar ataxia inherited in an autosomal dominant manner, dentate-rubro-pallido-luysian atrophy, Friedreich’s disease, ataxia with ocu-lomotorapraxia, Huntington''s disease, dystonia type 1, Wilson’s disease, and some cases of Parkinson''s disease. 相似文献
3.
4.
Hong Zhao Lijie Yuan Dongli Zhu Banghao Sun Juan Du Jingyuan Wang 《Polish journal of microbiology》2022,71(2):173
To explore the role of gut microbiota in Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). Seventy fecal samples were collected, including 27 patients with GD, 27 with HT, and 16 samples from healthy volunteers. Chemiluminescence was used to detect thyroid function and autoantibodies (FT3, FT4, TSH, TRAb, TGAb, and TPOAb); thyroid ultrasound and 16S sequencing were used to analyze the bacteria in fecal samples; KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (Clusters of Orthologous Groups) were used to analyze the functional prediction and pathogenesis. The overall structure of gut microbiota in the GD and HT groups was significantly different from the healthy control group. Proteobacteria and Actinobacteria contents were the highest in the HT group. Compared to the control group, the GD and HT groups had a higher abundance of Erysipelotrichia, Cyanobacteria, and Ruminococcus_2 and lower levels of Bacillaceae and Megamonas. Further analysis of KEGG found that the “ABC transporter” metabolic pathway was highly correlated with the occurrence of GD and HT. COG analysis showed that the GD and HT groups were enriched in carbohydrate transport and metabolism compared to the healthy control group but not in amino acid transport and metabolism. Our data suggested that Bacillus, Blautia, and Ornithinimicrobium could be used as potential markers to distinguish GD and HT from the healthy population and that “ABC transporter” metabolic pathway may be involved in the pathogenesis of GD and HT. 相似文献
5.
Iva Stojkovska Brandon M Wagner Brad E Morrison 《Experimental biology and medicine (Maywood, N.J.)》2015,240(11):1387-1395
Parkinson’s disease (PD) is the first and second most prevalent motor and neurodegenerative disease, respectively. The clinical symptoms of PD result from a loss of midbrain dopaminergic (DA) neurons. However, the molecular cause of DA neuron loss remains elusive. Mounting evidence implicates enhanced inflammatory response in the development and progression of PD pathology. This review examines current research connecting PD and inflammatory response. 相似文献
7.
Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of agerelated neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients. 相似文献
8.
9.
In the last years due to development of molecular methods a substantial progress in understanding of geneticassociations with drug effects in many clinical disciplines has been observed. The efforts to define the role of genetic polymorphismsin optimizing pharmacotherapy of Parkinson’s disease (PD) were also undertaken. So far, some promisinggenetic loci for PD treatment were determined. In the review pharmacogenetic aspects of levodopa, dopamine agonistsand COMT inhibitors are discussed. 相似文献
10.
11.
Mutations to the cholesterol transport protein apolipoprotein E (ApoE) have been identified as a major risk factor for the development of sporadic or late-onset Alzheimer’s disease (AD), with the e4 allele representing an increased risk and the rare e2 allele having a reduced risk compared to the primary e3 form. The reasons behind the change in risk are not entirely understood, though ApoE4 has been connected to inflammation and toxicity in both the brain and the periphery. The goal of this study was to better understand how the ApoE isoforms (ApoE2/3/4) confer differential AD-related risk by assessing cell-specific ApoE-related neuroinflammatory and neurotoxic effects. We compared the effects of ApoE isoforms in vitro on human astrocytes, a human immortalized microglia cell line (HMC3), and the human neuroblastoma cell line SH-SY5Y. Cells were treated for 24 h with or without recombinant ApoE2, ApoE3, or ApoE4 (20 nM) and inflammation and toxicity markers assessed. Our results indicated the expression of inflammatory cytokines IL-1β, TNFα, and IL-6 in human astrocytes was increased in response to all ApoE isoforms, with ApoE4 evoking the highest level of cytokine expression. In response to ApoE2 or ApoE3, microglial cells showed reduced levels of microglial activation markers TREM2 and Clec7a, while ApoE4 induced increased levels of both markers. ApoE2 promoted neuron survival through increased BDNF release from astrocytes. In addition, ApoE2 promoted, while ApoE4 reduced, neuronal viability. Overall, these results suggest that ApoE4 acts on cells in the brain to promote inflammation and neuronal injury and that the deleterious effects of ApoE4 on these cells may, in part, contribute to its role as a risk factor for AD. 相似文献
12.
Tao Zhang Feng Tian Jing Wang Shanshan Zhou Xueqing Dong Kai Guo Jing Jing Ying Zhou Yundai Chen 《Cell stress & chaperones》2015,20(5):787-792
Cellular senescence of endothelial cells is a damage and stress response which induces pro-inflammatory, pro-atherosclerotic, and pro-thrombotic phenotypes. Donepezil is a drug used for the treatment of mild to moderate dementia of the Alzheimer’s disease (AD). The aim of the present study was to investigate the attenuation of endothelial cell senescence by donepezil and to explore the mechanisms underlying the anti-aging effects of donepezil. Our results indicated that high glucose (HG) markedly decreased cell viability of human umbilical vein endothelial cells (HUVECs), and this phenomenon was reversed by treatment with donepezil. Importantly, our results displayed that the frequency of senescent (SA-ß-gal-positive) cells and the expression level of senescence genes (PAI-1 and p21) were significantly higher in the HG group compared with the normal glucose (NG) group, and these changes were blocked by treatment with donepezil. Also, our results showed that donepezil inhibits the generation of reactive oxygen species (ROS), which promotes cellular senescence. Pretreatment with nicotinamide (NAM), a sirtuin 1 (SIRT1) inhibitor, inhibited the reduction in senescence associated with donepezil. Indeed, our results indicated that donepezil increased the SIRT1 enzyme activity. Therefore, these results show that donepezil delays cellular senescence that is promoted under HG condition via activation of SIRT1. 相似文献
13.
The spontaneous activity of the brain is dynamic even at rest and the deviation from this normal pattern of dynamics can lead to different pathological states. EEG microstate analysis of resting-state neuronal activity in Parkinson’s disease (PD) could provide insight into altered brain dynamics of patients exhibiting dementia. Resting-state EEG microstate maps were derived from 128 channel EEG data in 20 PD without dementia (PDND), 18 PD with dementia (PDD) and 20 Healthy controls (CON) using Cartool and sLORETA softwares. Microstate map parameters including global explained variance, mean duration, frequency of occurrence (TF) and time coverage were compared statistically among the groups. Eight maps that explained 72% of the topographic variance were identified and only three maps differed significantly across the groups. TF of Map1 was lower in both PDND and PDD (p < 0.001) and that of Map3 (p = 0.02) in PDND compared to control. Cortical sources showed higher activation in precuneus, cuneus and superior parietal lobe (Threshold: Log-F = 1.74, p < 0.05) with maximum activity in the precuneus region (MNI co-ordinates: − 25, − 75, − 40; Log-F = 1.9) in PDND compared to control only for Map1. Lower TF of Map1 (prototypical microstate D) may potentially serve as a biomarker for PD with or without dementia whereas higher activation of precuneus, cuneus and superior parietal lobe at resting-state could favour signal processing, lack of which could be associated with dementia in Parkinson’s disorder. 相似文献
14.
Bethann N. Johnson Rakshita A. Charan Matthew J. LaVoie 《Cell cycle (Georgetown, Tex.)》2012,11(15):2775-2776
Comment on: Johnson BN, et al. Proc Natl Acad Sci USA 2012; 109:6283-8. 相似文献
15.
16.
Hajung Yoo Jeongmin Lee Bokwang Kim Heechang Moon Huisu Jeong Kyungmi Lee Woo Jeung Song Junho K. Hur Yohan Oh 《BMB reports》2022,55(7):323
Together with neuronal loss, the existence of insoluble inclusions of alpha-synuclein (α-syn) in the brain is widely accepted as a hallmark of synucleinopathies including Parkinson’s disease (PD), multiple system atrophy, and dementia with Lewy body. Because the α-syn aggregates are deeply involved in the pathogenesis, there have been many attempts to demonstrate the mechanism of the aggregation and its potential causative factors including post-translational modifications (PTMs). Although no concrete conclusions have been made based on the previous study results, growing evidence suggests that modifications such as phosphorylation and ubiquitination can alter α-syn characteristics to have certain effects on the aggregation process in PD; either facilitating or inhibiting fibrillization. In the present work, we reviewed studies showing the significant impacts of PTMs on α-syn aggregation. Furthermore, the PTMs modulating α-syn aggregation-induced cell death have been discussed. 相似文献
17.
Vojislav Trkulja Andrija Tomi Renata Ili
i Milo Noini Tatjana Popovi Milovanovi 《The Plant Pathology Journal》2022,38(6):551
Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce’s disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments. 相似文献
18.
Francesco Giudici Laura Maggi Raffaella Santi Lorenzo Cosmi Francesco Annunziato Gabriella Nesi Giusi Barra Gabrio Bassotti Raffaele De Palma Francesco Tonelli 《Clinical and molecular allergy : CMA》2015,13(1)
Background
Crohn’s disease (CD) and Hidradenitis suppurativa (HS) are both chronic inflammatory diseases. The pathogenesis of these diseases is multifactorial, due to the interaction of genetic and environmental factors leading to a deregulated local immune response where T lymphocytes play a major role. To the best of our knowledge, no previous study has clarified whether the pathogenetic mechanism of perianal CD and HS is the same. We therefore analyzed the cellular expression pattern and the cytokine repertoire in three patients suffering from both perianal CD and HS.Methods
We evaluated three patients affected by concurrent HS and CD with fistulizing perianal disease. Surgical specimens have been fixed and embedded in paraffin prior to sectioning for histological examination. Inflammatory tissue curettages have been recovered during intervention from perianal fistulas and HS lesions in order to analyze the phenotypic and functional characteristics of infiltrating T cells. In particular we evaluated T cells, by flow cytometry, for cytokine production profile and expression of surface markers. Moreover, analysis of the T cell repertoire was performed by means of spectratyping, in only one patient.Results
A higher frequency of CD4+ CD161+ T lymphocytes has been detected in CD fistulas and in HS lesions than in peripheral blood (PB) samples. In the patient in whom we derived enough cells from the three sources, we found higher frequency of CD4+ IL-17- producing cells in HS lesion and fistula lesion compared to PB. It is noteworthy that the same clonotypes were expanded in this patient in T cells derived from both HS lesion and fistula lesion.Conclusion
The presence of numerous CD4+ CD161+ lymphocytes in fistula and HS lesion curettages suggests that these cells may play a pathogenic role, and candidates CD161 as a possible biological target for medical treatment. 相似文献19.
Luke Z. Li Chin Fung Kelvin Kan Tamika A. Webb-Detiege 《The Yale journal of biology and medicine》2021,94(4):603
Dercum’s disease (DD), also described as adiposis dolorosa, is a poorly understood and rare adipose tissue disorder involving obesity and painful adipose tissue masses. Patients may have associated bruising and constitutional symptoms such as fatigue, difficulty concentrating, and sleep disturbance. DD was initially described in 1888 by Francis Xavier Dercum, and was classified into four subtypes, including generalized diffuse, generalized nodular, localized nodular, and juxta-articular subtypes. While this disease has been described for more than 130 years, its etiology and treatment remain elusive. We describe a case of a patient with DD who presented to Ochsner Medical Center, New Orleans, LA, for evaluation of treatment options. We review current knowledge on this rare disease and data on modern treatment methods. 相似文献
20.
Jorge Parodi Lenin Ochoa-de la Paz Ricardo Miledi Ataúlfo Martínez-Torres 《Molecules and cells》2012,34(4):349-355
Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of “spontaneous” blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca2+ was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca2+-dependent Cl− currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (Tout) and the serum-activated, oscillatory Cl− currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca2+-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication. 相似文献