首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal communities play important roles in terrestrial ecosystem functioning. Unraveling the relative importance of stochastic versus deterministic processes in shaping biogeographic patterns of fungal communities has long been a challenge in microbial ecology, owing to high biodiversity and difficulties in identifying fungal taxa. Using a unique anthropogenic system of geographically isolated paddy ‘islands’, we collected 198 soil samples with a spatially explicit design to examine how ecological processes shaped fungal biogeographic patterns. Fungal community structure showed scale-dependent distance-decay relationships. Stochastic processes (dispersal and drift) contributed more to community assembly than deterministic processes (selection) at the local scale, which was largely attributed to drift. In contrast, deterministic processes contributed more to community assembly than stochastic processes at the regional scale, with soil dissolved organic carbon being the most important measured factor. Collectively, scale dependence of fungal biogeographical patterns in paddy soils is influenced by differential contribution of deterministic and stochastic processes.  相似文献   

2.
The Moorea Coral Reef Long Term Ecological Research (LTER) Site (17.50°S, 149.83°W) comprises the fringe of coral reefs and lagoons surrounding the volcanic island of Moorea in the Society Islands of French Polynesia. As part of our Microbial Inventory Research Across Diverse Aquatic LTERS biodiversity inventory project, we characterized microbial community composition across all three domains of life using amplicon pyrosequencing of the V6 (bacterial and archaeal) and V9 (eukaryotic) hypervariable regions of small-subunit ribosomal RNA genes. Our survey spanned eight locations along a 130-km transect from the reef lagoon to the open ocean to examine changes in communities along inshore to offshore gradients. Our results illustrate consistent community differentiation between inshore and offshore ecosystems across all three domains, with greater richness in all domains in the reef-associated habitats. Bacterial communities were more homogenous among open ocean sites spanning >100 km than among inshore sites separated by <1 km, whereas eukaryotic communities varied more offshore than inshore, and archaea showed more equal levels of dissimilarity among subhabitats. We identified signature communities representative of specific geographic and geochemical milieu, and characterized co-occurrence patterns of specific microbial taxa within the inshore ecosystem including several bacterial groups that persist in geographical niches across time. Bacterial and archaeal communities were dominated by few abundant taxa but spatial patterning was consistent through time and space in both rare and abundant communities. This is the first in-depth inventory analysis of biogeographic variation of all three microbial domains within a coral reef ecosystem.  相似文献   

3.
Interactions among microbes and stratification across depths are both believed to be important drivers of microbial communities, though little is known about how microbial associations differ between and across depths. We have monitored the free-living microbial community at the San Pedro Ocean Time-series station, monthly, for a decade, at five different depths: 5 m, the deep chlorophyll maximum layer, 150 m, 500 m and 890 m (just above the sea floor). Here, we introduce microbial association networks that combine data from multiple ocean depths to investigate both within- and between-depth relationships, sometimes time-lagged, among microbes and environmental parameters. The euphotic zone, deep chlorophyll maximum and 890 m depth each contain two negatively correlated ‘modules'' (groups of many inter-correlated bacteria and environmental conditions) suggesting regular transitions between two contrasting environmental states. Two-thirds of pairwise correlations of bacterial taxa between depths lagged such that changes in the abundance of deeper organisms followed changes in shallower organisms. Taken in conjunction with previous observations of seasonality at 890 m, these trends suggest that planktonic microbial communities throughout the water column are linked to environmental conditions and/or microbial communities in overlying waters. Poorly understood groups including Marine Group A, Nitrospina and AEGEAN-169 clades contained taxa that showed diverse association patterns, suggesting these groups contain multiple ecological species, each shaped by different factors, which we have started to delineate. These observations build upon previous work at this location, lending further credence to the hypothesis that sinking particles and vertically migrating animals transport materials that significantly shape the time-varying patterns of microbial community composition.  相似文献   

4.
Patterns and Processes of Microbial Community Assembly   总被引:1,自引:0,他引:1  

SUMMARY

Recent research has expanded our understanding of microbial community assembly. However, the field of community ecology is inaccessible to many microbial ecologists because of inconsistent and often confusing terminology as well as unnecessarily polarizing debates. Thus, we review recent literature on microbial community assembly, using the framework of Vellend (Q. Rev. Biol. 85:183–206, 2010) in an effort to synthesize and unify these contributions. We begin by discussing patterns in microbial biogeography and then describe four basic processes (diversification, dispersal, selection, and drift) that contribute to community assembly. We also discuss different combinations of these processes and where and when they may be most important for shaping microbial communities. The spatial and temporal scales of microbial community assembly are also discussed in relation to assembly processes. Throughout this review paper, we highlight differences between microbes and macroorganisms and generate hypotheses describing how these differences may be important for community assembly. We end by discussing the implications of microbial assembly processes for ecosystem function and biodiversity.  相似文献   

5.
Symbiotic microbial communities are important for host health, but the processes shaping these communities are poorly understood. Understanding how community assembly processes jointly affect microbial community composition is limited because inflexible community models rely on rejecting dispersal and drift before considering selection. We developed a flexible community assembly model based on neutral theory to ask: How do dispersal, drift and selection concurrently affect the microbiome across environmental gradients? We applied this approach to examine how a fungal pathogen affected the assembly processes structuring the amphibian skin microbiome. We found that the rejection of neutrality for the amphibian microbiome across a fungal gradient was not strictly due to selection processes, but was also a result of species‐specific changes in dispersal and drift. Our modelling framework brings the qualitative recognition that niche and neutral processes jointly structure microbiomes into quantitative focus, allowing for improved predictions of microbial community turnover across environmental gradients.  相似文献   

6.
Macroecological patterns are found in animals and plants, but also in micro‐organisms. Macroecological and biogeographic distribution patterns in marine Archaea, however, have not been studied yet. Ammonia‐oxidizing Archaea (AOA) show a bipolar distribution (i.e. similar communities in the northernmost and the southernmost locations, separated by distinct communities in the tropical and gyral regions) throughout the Atlantic, detectable from epipelagic to upper bathypelagic layers (<2000 m depth). This tentatively suggests an influence of the epipelagic conditions of organic matter production on bathypelagic AOA communities. The AOA communities below 2000 m depth showed a less pronounced biogeographic distribution pattern than the upper 2000 m water column. Overall, AOA in the surface and deep Atlantic waters exhibit distance–decay relationships and follow the Rapoport rule in a similar way as bacterial communities and macroorganisms. This indicates a major role of environmental conditions in shaping the community composition and assembly (species sorting) and no, or only weak limits for dispersal in the oceanic thaumarchaeal communities. However, there is indication of a different strength of these relationships between AOA and Bacteria, linked to the intrinsic differences between these two domains.  相似文献   

7.
The study of islands has made substantial contributions to the development of evolutionary and ecological theory. However, we know little about microbial community assembly on islands. Using soil microbial data collected from 29 lake islands and nearby mainland, we examined the assembly mechanisms of soil bacterial and fungal communities among and within islands. We found that deterministic processes, especially homogeneous selection, tended to be more important in shaping the assembly of soil bacterial communities among islands, while stochastic processes tended to be more important within islands. Moreover, increasing island area increased the importance of homogeneous selection, but reduced the importance of variable selection, for soil bacterial community assembly within islands. By contrast, stochastic processes tended to dominate soil fungal community assembly both among and within islands, with dispersal limitation playing a more important role within than among islands. Our results highlight the scale- and taxon-dependence of insular soil microbial community assembly, suggesting that spatial scale should be explicitly considered when evaluating the influences of habitat fragmentation on soil microbial communities.  相似文献   

8.
We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.  相似文献   

9.
Few studies of microbial biogeography address variability across both multiple habitats and multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing of 300 water samples collected in 2007 and 2008. Communities separated into seven groups (ANOSIM, P<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom (depth<350 m) and slope bottom (depth>850 m). The ordination of these samples was correlated with salinity (ρ=−0.83) and depth (ρ=−0.62). Temporal patterns were obscured by spatial variability among the coastal environments, and could only be detected within individual groups. Thus, structuring environmental factors (for example, salinity, depth) dominate over seasonal changes in determining community composition. Seasonal variability was detected across an annual cycle in the river, estuary and plume where communities separated into two groups, early year (April–July) and late year (August–Nov), demonstrating annual reassembly of communities over time. Determining both the spatial and temporal variability of bacterioplankton communities provides a framework for modeling these communities across environmental gradients from river to deep ocean.  相似文献   

10.
The subsurface realm is colonized by microbial communities to depths of >1000 meters below the seafloor (m.b.sf.), but little is known about overall diversity and microbial distribution patterns at the most profound depths. Here we show that not only Bacteria and Archaea but also Eukarya occur at record depths in the subseafloor of the Canterbury Basin. Shifts in microbial community composition along a core of nearly 2 km reflect vertical taxa zonation influenced by sediment depth. Representatives of some microbial taxa were also cultivated using methods mimicking in situ conditions. These results suggest that diverse microorganisms persist down to 1922 m.b.sf. in the seafloor of the Canterbury Basin and extend the previously known depth limits of microbial evidence (i) from 159 to 1740 m.b.sf. for Eukarya and (ii) from 518 to 1922 m.b.sf. for Bacteria.  相似文献   

11.
Although open ocean time-series sites have been areas of microbial research for years, relatively little is known about the population dynamics of bacterioplankton communities in the coastal ocean on kilometer spatial and seasonal temporal scales. To gain a better understanding of microbial community variability, monthly samples of bacterial biomass were collected in 1995-1996 along a 34-km transect near the Long-Term Ecosystem Observatory (LEO-15) off the New Jersey coast. Surface and bottom sampling was performed at seven stations along a transect line with depths ranging from 1 to 35 m (n=178). Microbial populations were fingerprinted using ribosomal 16S rRNA genes and terminal restriction fragment length polymorphism analysis. Results from cluster analysis revealed distinct temporal patterns among the bacterioplankton communities in the Mid-Atlantic Bight rather than grouping by sample location or depth. Principal components analysis models supported the temporal patterns. In addition, partial least squares regression modeling could not discern a significant correlation from traditional oceanographic physical and phytoplankton nutrient parameters on overall bacterial community variability patterns at LEO-15. These results suggest factors not traditionally measured during oceanographic studies are structuring coastal microbial communities.  相似文献   

12.
In this study, we investigated microbial communities (bacteria and protist) in two coastal areas near the estuaries of the Liaohe (LH) River and Yalujiang (YLJ) River in the Northwestern Pacific Ocean. Due to the existence of Liaodong Peninsula and different levels of urbanization, geographical segregation and significant environmental heterogeneity were observed between these two areas. There were significantly different regional species pools and biogeographic patterns for both bacterial and protistan communities between LH and YLJ coastal areas. Species turnover was the main mechanism driving β-diversity patterns of both bacterial and protistan communities in each area. In addition, the contributed ratio of nestedness to the β-diversity patterns was significantly higher for protists compared to bacteria. Variation in regional species pools was found to be the dominant driver of differences of bacterial and protistan communities between the LH and YLJ coastal areas. For a single-studied area, local community assembly mechanisms, including heterogeneous selection and dispersal limitation, were found to shape the bacterial and protistan communities through calculation of the β-deviation index. Among them, the relative importance of heterogeneous selection and dispersal limitation on the community assembly varied according to microorganism type and habitat.  相似文献   

13.
Estuaries connect rivers with the ocean and are considered transition regions due to the continuous inputs from rivers. Microbiota from different sources converge and undergo succession in these transition regions, but their assembly mechanisms along environmental gradients remain unclear. Here, we found that salinity had a stronger effect on planktonic than on benthic microbial communities, and the dominant planktonic bacteria changed more distinctly than the dominant benthic bacteria with changes in salinity. The planktonic bacteria in the brackish water came mainly from seawater, which was confirmed in the laboratory, whereas the benthic bacteria were weakly affected by salinity, which appeared to be a mixture of the bacteria from riverine and oceanic sediments. Benthic bacterial community assembly in the sediments was mainly controlled by homogeneous selection and almost unaffected by changes in salinity, the dominant assemblage processes for planktonic bacteria changed dramatically along the salinity gradient, from homogeneous selection in freshwater to drift in seawater. Our results highlight that salinity is the key driver of estuarine microbial succession and that salinity is more important in shaping planktonic than benthic bacterial communities in the Yellow River estuary.  相似文献   

14.
How diversity is structured has been a central goal of microbial ecology. In freshwater ecosystems, selection has been found to be the main driver shaping bacterial communities. However, its relative importance compared with other processes (dispersal, drift, diversification) may depend on spatial heterogeneity and the dispersal rates within a metacommunity. Still, a decrease in the role of selection is expected with increasing dispersal homogenization. Here, we investigate the main ecological processes modulating bacterial assembly in contrasting scenarios of environmental heterogeneity. We carried out a spatiotemporal survey in the floodplain system of the Paraná River. The bacterioplankton metacommunity was studied using both statistical inferences based on phylogenetic and taxa turnover as well as co-occurrence networks. We found that selection was the main process determining community assembly even at both extremes of environmental heterogeneity and homogeneity, challenging the general view that the strength of selection is weakened due to dispersal homogenization. The ecological processes acting on the community also determined the connectedness of bacterial networks associations. Heterogeneous selection promoted more interconnected networks increasing β-diversity. Finally, spatiotemporal heterogeneity was an important factor determining the number and identity of the most highly connected taxa in the system. Integrating all these empirical evidences, we propose a new conceptual model that elucidates how the environmental heterogeneity determines the action of the ecological processes shaping the bacterial metacommunity.Subject terms: Community ecology, Microbial ecology  相似文献   

15.
Knowledge of the spatial scales of diversity is necessary to evaluate the mechanisms driving biodiversity and biogeography in the vast but poorly understood deep sea. The community structure of kinetoplastids, an important group of microbial eukaryotes belonging to the Euglenozoa, from all abyssal plains of the South Atlantic and two areas of the eastern Mediterranean was studied using partial small subunit ribosomal DNA gene clone libraries. A total of 1364 clones from 10 different regions were retrieved. The analysis revealed statistically not distinguishable communities from both the South-East Atlantic (Angola and Guinea Basin) and the South-West Atlantic (Angola and Brazil Basin) at spatial scales of 1000–3000 km, whereas all other communities were significantly differentiated from one another. It seems likely that multiple processes operate at the same time to shape communities of deep-sea kinetoplastids. Nevertheless, constant and homogenous environmental conditions over large spatial scales at abyssal depths, together with high dispersal capabilities of microbial eukaryotes, maintain best the results of statistically indistinguishable communities at larger spatial scales.  相似文献   

16.
Diversity begets higher-order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions and it is this ‘system'' that is the basis for higher-order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions.  相似文献   

17.
The extent to which non-host-associated bacterial communities exhibit small-scale biogeographic patterns in their distribution remains unclear. Our investigation of biogeography in bacterial community composition and function compared samples collected across a smaller spatial scale than most previous studies conducted in freshwater. Using a grid-based sampling design, we abstracted 100+ samples located between 3.5 and 60 m apart within each of three alpine ponds. For every sample, variability in bacterial community composition was monitored using a DNA-fingerprinting methodology (automated ribosomal intergenic spacer analysis) whereas differences in bacterial community function (that is, carbon substrate utilisation patterns) were recorded from Biolog Ecoplates. The exact spatial position and dominant physicochemical conditions (for example, pH and temperature) were simultaneously recorded for each sample location. We assessed spatial differences in bacterial community composition and function within each pond and found that, on average, community composition or function differed significantly when comparing samples located >20 m apart within any pond. Variance partitioning revealed that purely spatial variation accounted for more of the observed variability in both bacterial community composition and function (range: 24–38% and 17–39%) than the combination of purely environmental variation and spatially structured environmental variation (range: 17–32% and 15–20%). Clear spatial patterns in bacterial community composition, but not function were observed within ponds. We therefore suggest that some of the observed variation in bacterial community composition is functionally ‘redundant''. We confirm that distinct bacterial communities are present across unexpectedly small spatial scales suggesting that populations separated by distances of >20 m may be dispersal limited, even within the highly continuous environment of lentic water.  相似文献   

18.
Although pyrogenic organic matter (PyOM) generated during wildfires plays a critical role in post-fire ecosystem recovery, the specific mechanisms by which PyOM controls soil microbial community assembly after wildfire perturbation remain largely uncharacterized. Herein we characterized the effect of PyOM on soil bacterial communities at two independent wildfire-perturbed forest sites. We observed that α-diversity of bacterial communities was the highest in wildfire-perturbed soils and that bacterial communities gradually changed along a sequence of unburnt soil → burnt soil → PyOM. The microbial communities reconstructed from unburnt soil and PyOM resembled the real bacterial communities in wildfire-perturbed soils in their α-diversity and community structure. Bacterial specialists in PyOM and soils clustered in phylogenetic coherent lineages with intra-lineage pH-niche conservatism and inter-lineage pH-niche divergence. Our results suggest that PyOM mediates bacterial community assembly in wildfire-perturbed soils by a combination of environmental selection and dispersal of phylogenetic coherent specialists with habitat preference in the heterogeneous microhabitats of burnt soils with distinct PyOM patches.Subject terms: Forest ecology, Microbial ecology  相似文献   

19.
Microbial biogeography studies expend much effort in determining whether environmental selection or stochastic processes related to dispersal are more important in shaping community composition. While both types of factors are possibly influential, it is tacitly assumed that protists, or microbial eukaryotes in general, behave biogeographically as prokaryotes because of their small physical size. However, direct evidence for this in exactly the same environment and at the same phylogenetic depth is lacking. In this study, we compared the structure of both prokaryotic and eukaryotic components of microbial communities forming biofilms on mineral substrates in different geographic locations at the level of small-subunit (SSU) rRNA-based operational taxonomic units (OTUs). These microbial communities are subjected to strong environmental selection and contain significant proportions of extremophilic microorganisms adapted to desiccation and UV radiation. We find that the nature of the substrate as well as climatic variables and geography influences microbial community structure. However, constrained correspondence analyses and distance-decay curves showed that, whereas the substrate type was the most significant factor structuring bacterial communities, geographic location was the most influential factor for microbial eukaryote communities. Biological explanations implying a higher dispersal success for bacteria combined with more mobile lifestyles for predatory protists may underlie these different prokaryote versus microbial eukaryote biogeographic patterns.  相似文献   

20.
Bottom–up selection has an important role in microbial community assembly but is unable to account for all observed variance. Other processes like top–down selection (e.g., predation) may be partially responsible for the unexplained variance. However, top–down processes and their interaction with bottom–up selective pressures often remain unexplored. We utilised an in situ marine biofilm model system to test the effects of bottom–up (i.e., substrate properties) and top–down (i.e., large predator exclusion via 100 µm mesh) selective pressures on community assembly over time (56 days). Prokaryotic and eukaryotic community compositions were monitored using 16 S and 18 S rRNA gene amplicon sequencing. Higher compositional variance was explained by growth substrate in early successional stages, but as biofilms mature, top–down predation becomes progressively more important. Wooden substrates promoted heterotrophic growth, whereas inert substrates’ (i.e., plastic, glass, tile) lack of degradable material selected for autotrophs. Early wood communities contained more mixotrophs and heterotrophs (e.g., the total abundance of Proteobacteria and Euglenozoa was 34% and 41% greater within wood compared to inert substrates). Inert substrates instead showed twice the autotrophic abundance (e.g., cyanobacteria and ochrophyta made up 37% and 10% more of the total abundance within inert substrates than in wood). Late native (non-enclosed) communities were mostly dominated by autotrophs across all substrates, whereas high heterotrophic abundance characterised enclosed communities. Late communities were primarily under top–down control, where large predators successively pruned heterotrophs. Integrating a top–down control increased explainable variance by 7–52%, leading to increased understanding of the underlying ecological processes guiding multitrophic community assembly and successional dynamics.Subject terms: Microbial ecology, Community ecology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号