首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cas12f, also known as Cas14, is an exceptionally small type V-F CRISPR–Cas nuclease that is roughly half the size of comparable nucleases of this type. To reveal the mechanisms underlying substrate recognition and cleavage, we determined the cryo-EM structures of the Cas12f-sgRNA-target DNA and Cas12f-sgRNA complexes at 3.1 and 3.9 Å, respectively. An asymmetric Cas12f dimer is bound to one sgRNA for recognition and cleavage of dsDNA substrate with a T-rich PAM sequence. Despite its dimerization, Cas12f adopts a conserved activation mechanism among the type V nucleases which requires coordinated conformational changes induced by the formation of the crRNA-target DNA heteroduplex, including the close-to-open transition in the lid motif of the RuvC domain. Only one RuvC domain in the Cas12f dimer is activated by substrate recognition, and the substrate bound to the activated RuvC domain is captured in the structure. Structure-assisted truncated sgRNA, which is less than half the length of the original sgRNA, is still active for target DNA cleavage. Our results expand our understanding of the diverse type V CRISPR–Cas nucleases and facilitate potential genome editing applications using the miniature Cas12f.  相似文献   

2.
3.
Although the efficiency and versatility of CRISPR‐Cas9 system has been greatly improved over conventional genome editing methods such as zinc finger or TALEN, it is still time‐consuming and labor‐intensive for screening knockout/knock‐in cell clones due to differences of the targeted location or efficacies of guide RNAs (gRNAs). Here, we adapted a targeted knock‐in strategy with CRISPR‐Cas9 system and characterized the efficiency for generating single or double knockout cell lines. Specifically, a homology‐arm based donor cassette consisting of genes encoding a fluorescence protein and antibiotic selection marker driven by a constitutive promoter was co‐transfected with a gRNA expressing unit. Based on FACS sorting and antibiotic drug selection, positive cell clones were confirmed by genotyping and at the protein expression level. The results indicated that more than 70% of analyzed clones identified by cell sorting and selection were successfully targeted in both single and double knockout experiments. The procedure takes less than three weeks to obtain knockout cell lines. We believe that this methodology could be applicable and versatile in generating knockout cell clones with high efficiency in most cell lines.  相似文献   

4.
Antibiotic resistance threatens our ability to treat infectious diseases, spurring interest in alternative antimicrobial technologies. The use of bacterial conjugation to deliver CRISPR‐cas systems programmed to precisely eliminate antibiotic‐resistant bacteria represents a promising approach but requires high in situ DNA transfer rates. We have optimized the transfer efficiency of conjugative plasmid TP114 using accelerated laboratory evolution. We hence generated a potent conjugative delivery vehicle for CRISPR‐cas9 that can eliminate > 99.9% of targeted antibiotic‐resistant Escherichia coli in the mouse gut microbiota using a single dose. We then applied this system to a Citrobacter rodentium infection model, achieving full clearance within four consecutive days of treatment.  相似文献   

5.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   

6.
Pathological TDP‐43 aggregation is characteristic of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD‐TDP); however, how TDP‐43 aggregation and function are regulated remain poorly understood. Here, we show that O‐GlcNAc transferase OGT‐mediated O‐GlcNAcylation of TDP‐43 suppresses ALS‐associated proteinopathies and promotes TDP‐43''s splicing function. Biochemical and cell‐based assays indicate that OGT''s catalytic activity suppresses TDP‐43 aggregation and hyperphosphorylation, whereas abolishment of TDP‐43 O‐GlcNAcylation impairs its RNA splicing activity. We further show that TDP‐43 mutations in the O‐GlcNAcylation sites improve locomotion defects of larvae and adult flies and extend adult life spans, following TDP‐43 overexpression in Drosophila motor neurons. We finally demonstrate that O‐GlcNAcylation of TDP‐43 promotes proper splicing of many mRNAs, including STMN2, which is required for normal axonal outgrowth and regeneration. Our findings suggest that O‐GlcNAcylation might be a target for the treatment of TDP‐43‐linked pathogenesis.  相似文献   

7.
Repair of DNA double‐stranded breaks by homologous recombination (HR) is dependent on DNA end resection and on post‐translational modification of repair factors. In budding yeast, single‐stranded DNA is coated by replication protein A (RPA) following DNA end resection, and DNA–RPA complexes are then SUMO‐modified by the E3 ligase Siz2 to promote repair. Here, we show using enzymatic assays that DNA duplexes containing 3'' single‐stranded DNA overhangs increase the rate of RPA SUMO modification by Siz2. The SAP domain of Siz2 binds DNA duplexes and makes a key contribution to this process as highlighted by models and a crystal structure of Siz2 and by assays performed using protein mutants. Enzymatic assays performed using DNA that can accommodate multiple RPA proteins suggest a model in which the SUMO‐RPA signal is amplified by successive rounds of Siz2‐dependent SUMO modification of RPA and dissociation of SUMO‐RPA at the junction between single‐ and double‐stranded DNA. Our results provide insights on how DNA architecture scaffolds a substrate and E3 ligase to promote SUMO modification in the context of DNA repair.  相似文献   

8.
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two‐ended DNA double‐strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single‐ended DSBs are repaired by break‐induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two‐ended DSBs. Here, we demonstrate that BIR is suppressed at two‐ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D‐loop unwinding helicase Mph1, and (iii) Mre11‐Rad50‐Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.  相似文献   

9.
The single‐stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism in bacteria. This protein performs two distinct, but closely intertwined and indispensable functions in the cell. SSB binds to single‐stranded DNA (ssDNA) and at least 20 partner proteins resulting in their regulation. These partners comprise a family of genome guardians known as the SSB interactome. Essential to interactome regulation is the linker/OB‐fold network of interactions. This network of interactions forms when one or more PXXP motifs in the linker of SSB bind to an OB‐fold in a partner, with interactome members involved in competitive binding between the linker and ssDNA to their OB‐fold. Consequently, when linker‐binding occurs to an OB‐fold in an interactome partner, proteins are loaded onto the DNA. When linker/OB‐fold interactions occur between SSB tetramers, cooperative ssDNA‐binding results, producing a multi‐tetrameric complex that rapidly protects the ssDNA. Within this SSB‐ssDNA complex, there is an extensive and dynamic network of linker/OB‐fold interactions that involves multiple tetramers bound contiguously along the ssDNA lattice. The dynamic behavior of these tetramers which includes binding mode changes, sliding as well as DNA wrapping/unwrapping events, are likely coupled to the formation and disruption of linker/OB‐fold interactions. This behavior is essential to facilitating downstream DNA processing events. As OB‐folds are critical to the essence of the linker/OB‐fold network of interactions, and they are found in multiple interactome partners, the SSB interactome is classified as the first family of prokaryotic, oligosaccharide/oligonucleotide binding fold (OB‐fold) genome guardians.  相似文献   

10.
11.
12.
13.
Pangolins have been suggested as potential reservoir of zoonotic viruses, including SARS‐CoV‐2 causing the global COVID‐19 outbreak. Here, we study the binding of two SARS‐CoV‐2‐like viruses isolated from pangolins, GX/P2V/2017 and GD/1/2019, to human angiotensin‐converting enzyme 2 (hACE2), the receptor of SARS‐CoV‐2. We find that the spike protein receptor‐binding domain (RBD) of pangolin CoVs binds to hACE2 as efficiently as the SARS‐CoV‐2 RBD in vitro. Furthermore, incorporation of pangolin CoV RBDs allows entry of pseudotyped VSV particles into hACE2‐expressing cells. A screen for binding of pangolin CoV RBDs to ACE2 orthologs from various species suggests a broader host range than that of SARS‐CoV‐2. Additionally, cryo‐EM structures of GX/P2V/2017 and GD/1/2019 RBDs in complex with hACE2 show their molecular binding in modes similar to SARS‐CoV‐2 RBD. Introducing the Q498H substitution found in pangolin CoVs into the SARS‐CoV‐2 RBD expands its binding capacity to ACE2 homologs of mouse, rat, and European hedgehog. These findings suggest that these two pangolin CoVs may infect humans, highlighting the necessity of further surveillance of pangolin CoVs.  相似文献   

14.
Clostridium perfringens is one of the most widely distributed and successful pathogens producing an impressive arsenal of toxins. One of the most potent toxins produced is the C. perfringens β‐toxin (CPB). This toxin is the main virulence factor of type C strains. We describe the cryo‐electron microscopy (EM) structure of CPB oligomer. We show that CPB forms homo‐octameric pores like the hetero‐oligomeric pores of the bi‐component leukocidins, with important differences in the receptor binding region and the N‐terminal latch domain. Intriguingly, the octameric CPB pore complex contains a second 16‐stranded β‐barrel protrusion atop of the cap domain that is formed by the N‐termini of the eight protomers. We propose that CPB, together with the newly identified Epx toxins, is a member a new subclass of the hemolysin‐like family. In addition, we show that the β‐barrel protrusion domain can be modified without affecting the pore‐forming ability, thus making the pore particularly attractive for macromolecule sensing and nanotechnology. The cryo‐EM structure of the octameric pore of CPB will facilitate future developments in both nanotechnology and basic research.  相似文献   

15.
16.
The aggregation of β‐amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer''s disease pathogenesis. Aβ42 is one of several Aβ peptides, all of Aβ30 to Aβ43 that are produced as a result of γ‐secretase–mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ‐Secretase modulators (GSMs) represent a promising class of Aβ42‐lowering anti‐amyloidogenic compounds for the treatment of AD. Gamma‐secretase modulators change the relative proportion of secreted Aβ peptides, while sparing the γ‐secretase–mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ‐secretase cleavage of three γ‐secretase substrates, E‐cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ‐secretase–dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ‐secretase processing of EphA4 and EphB2 results in the release of several Aβ‐like peptides, but that only the production of Aβ‐like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aβ modulation. Collectively, these results suggest that GSMs are selective for γ‐secretase–mediated Aβ production.  相似文献   

17.
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial–mesenchymal transition (EMT) in this resistance. Epithelial‐like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial‐like and mesenchymal‐like cells, the module identification analysis was performed using weighted gene co‐expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein–protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co‐expression of miRNA‐lncRNA‐TF with the hub genes was reconstructed. The co‐expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non‐preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co‐expression pattern of the brown module''s hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.  相似文献   

18.
Since its first appearance, CRISPR–Cas9 has been developed extensively as a programmable genome-editing tool, opening a new era in plant genome engineering. However, CRISPR–Cas9 still has some drawbacks, such as limitations of the protospacer-adjacent motif (PAM) sequence, target specificity, and the large size of the cas9 gene. To combat invading bacterial phages and plasmid DNAs, bacteria and archaea have diverse and unexplored CRISPR–Cas systems, which have the potential to be developed as a useful genome editing tools. Recently, discovery and characterization of additional CRISPR–Cas systems have been reported. Among them, several CRISPR–Cas systems have been applied successfully to plant and human genome editing. For example, several groups have achieved genome editing using CRISPR–Cas type I-D and type I-E systems, which had never been applied for genome editing previously. In addition to higher specificity and recognition of different PAM sequences, recently developed CRISPR–Cas systems often provide unique characteristics that differ from well-known Cas proteins such as Cas9 and Cas12a. For example, type I CRISPR–Cas10 induces small indels and bi-directional long-range deletions ranging up to 7.2 kb in tomatoes (Solanum lycopersicum L.). Type IV CRISPR–Cas13 targets RNA, not double-strand DNA, enabling highly specific knockdown of target genes. In this article, we review the development of CRISPR–Cas systems, focusing especially on their application to plant genome engineering. Recent CRISPR–Cas tools are helping expand our plant genome engineering toolbox.

Recently discovered and characterized clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR–Cas) systems allow additional applications to plant genome editing.  相似文献   

19.
The molecular mechanisms that drive the infection by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)—the causative agent of coronavirus disease 2019 (COVID‐19)—are under intense current scrutiny to understand how the virus operates and to uncover ways in which the disease can be prevented or alleviated. Recent proteomic screens of the interactions between viral and host proteins have identified the human proteins targeted by SARS‐CoV‐2. The DNA polymerase α (Pol α)–primase complex or primosome—responsible for initiating DNA synthesis during genomic duplication—was identified as a target of nonstructural protein 1 (nsp1), a major virulence factor in the SARS‐CoV‐2 infection. Here, we validate the published reports of the interaction of nsp1 with the primosome by demonstrating direct binding with purified recombinant components and providing a biochemical characterization of their interaction. Furthermore, we provide a structural basis for the interaction by elucidating the cryo‐electron microscopy structure of nsp1 bound to the primosome. Our findings provide biochemical evidence for the reported targeting of Pol α by the virulence factor nsp1 and suggest that SARS‐CoV‐2 interferes with Pol α''s putative role in the immune response during the viral infection.  相似文献   

20.
Liver steatosis is associated with increased ischaemia reperfusion (I/R) injury. Our previous studies have shown that irisin, an exercise‐induced hormone, mitigates I/R injury via binding to αVβ5 integrin. However, the effect of irisin on I/R injury in steatotic liver remains unknown. Kindlin‐2 directly interacts with β integrin. We therefore suggest that irisin protects against I/R injury in steatotic liver via a kindlin‐2 dependent mechanism. To study this, hepatic steatosis was induced in male adult mice by feeding them with a 60% high‐fat diet (HFD). At 12 weeks after HFD feeding, the mice were subjected to liver ischaemia by occluding partial (70%) hepatic arterial/portal venous blood for 60 minutes, which was followed by 24 hours reperfusion. Our results showed HFD exaggerated I/R‐induced liver injury. Irisin (250 μg/kg) administration at the beginning of reperfusion attenuated liver injury, improved mitochondrial function, and reduced oxidative and endoplasmic reticulum stress in HFD‐fed mice. However, kindlin‐2 inhibition by RNAi eliminated irisin''s direct effects on cultured hepatocytes. In conclusion, irisin attenuates I/R injury in steatotic liver via a kindlin‐2 dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号