首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The level of sequence heterogeneity among rrn operons within genomes determines the accuracy of diversity estimation by 16S rRNA-based methods. Furthermore, the occurrence of widespread horizontal gene transfer (HGT) between distantly related rrn operons casts doubt on reconstructions of phylogenetic relationships. For this study, patterns of distribution of rrn copy numbers, interoperonic divergence, and redundancy of 16S rRNA sequences were evaluated. Bacterial genomes display up to 15 operons and operon numbers up to 7 are commonly found, but ~40% of the organisms analyzed have either one or two operons. Among the Archaea, a single operon appears to dominate and the highest number of operons is five. About 40% of sequences among 380 operons in 76 bacterial genomes with multiple operons were identical to at least one other 16S rRNA sequence in the same genome, and in 38% of the genomes all 16S rRNAs were invariant. For Archaea, the number of identical operons was only 25%, but only five genomes with 21 operons are currently available. These considerations suggest an upper bound of roughly threefold overestimation of bacterial diversity resulting from cloning and sequencing of 16S rRNA genes from the environment; however, the inclusion of genomes with a single rrn operon may lower this correction factor to ~2.5. Divergence among operons appears to be small overall for both Bacteria and Archaea, with the vast majority of 16S rRNA sequences showing <1% nucleotide differences. Only five genomes with operons with a higher level of nucleotide divergence were detected, and Thermoanaerobacter tengcongensis exhibited the highest level of divergence (11.6%) noted to date. Overall, four of the five extreme cases of operon differences occurred among thermophilic bacteria, suggesting a much higher incidence of HGT in these bacteria than in other groups.  相似文献   

2.
Gemmata obscuriglobus is a Gram-negative bacterium with several intriguing biological features. Here, we present a complete, de novo whole genome assembly for G. obscuriglobus which consists of a single, circular 9 Mb chromosome, with no plasmids detected. The genome was annotated using the NCBI Prokaryotic Genome Annotation pipeline to generate common gene annotations. Analysis of the rRNA genes revealed three interesting features for a bacterium. First, linked G. obscuriglobus rrn operons have a unique gene order, 23S–5S–16S, compared to typical prokaryotic rrn operons (16S–23S–5S). Second, G. obscuriglobus rrn operons can either be linked or unlinked (a 16S gene is in a separate genomic location from a 23S and 5S gene pair). Third, all of the 23S genes (5 in total) have unique polymorphisms. Genome analysis of a different Gemmata species (SH-PL17), revealed a similar 23S–5S–16S gene order in all of its linked rrn operons and the presence of an unlinked operon. Together, our findings show that unique and rare features in Gemmata rrn operons among prokaryotes provide a means to better define the evolutionary relatedness of Gemmata species and the divergence time for different Gemmata species. Additionally, these rrn operon differences provide important insights into the rrn operon architecture of common ancestors of the planctomycetes.  相似文献   

3.
A physical and genetic map of the Pasteurella multocida A:1 genome was generated by using the restriction enzymes ApaI, CeuI, and NotI. The positions of 23 restriction sites and 32 genes, including 5 rrn operons, were localized on the 2.35-Mbp single circular chromosome. This report presents the first genetic and physical map for this genus.  相似文献   

4.
16S rRNA gene (rrs) is considered of low taxonomic interest in the genus Aeromonas. Here, 195 Aeromonas strains belonging to populations structured by multilocus phylogeny were studied using an original approach that considered Ribosomal Multi-Operon Diversity. This approach associated pulsed-field gel electrophoresis (PFGE) to assess rrn operon number and distribution across the chromosome and PCR-temporal temperature gel electrophoresis (TTGE) to assess rrs V3 region heterogeneity. Aeromonads harbored 8 to 11 rrn operons, 10 operons being observed in more than 92% of the strains. Intraspecific variability was low or nul except for A. salmonicida and A. aquariorum suggesting that large chromosomic rearrangements might occur in these two species while being extremely rarely encountered in the evolution of other taxa. rrn operon number at 8 as well as PFGE patterns were shown valuable for taxonomic purpose allowing resolution of species complexes. PCR-TTGE revealed a high rate of strains (41.5%) displaying intragenomic rrs heterogeneity. Strains isolated from human samples more frequently displayed intragenomic heterogeneity than strains recovered from non-human and environmental specimens. Intraspecific variability ranged from 0 to 76.5% of the strains. The observation of species-specific TTGE bands, the recovery of identical V3 regions in different species and the variability of intragenomic heterogeneity (1–13 divergent nucleotides) supported the occurrence of mutations and horizontal transfer in aeromonad rrs evolution. Altogether, the presence of a high number of rrn operon, the high proportion of strains harboring divergent rrs V3 region and the previously demonstrated high level of genetic diversity argued in favor of highly adaptative capabilities of aeromonads. Outstanding features observed for A. caviae supported the ongoing process of adaptation to a specialized niche represented by the gut, previously hypothesized. 16S rRNA gene is an informative marker in the genus Aeromonas for both evolutionary and polyphasic taxonomic studies provided that multi-operon fingerprinting approaches are used.  相似文献   

5.
Chaperone-usher (CU) fimbriae are adhesive surface organelles common to many Gram-negative bacteria. Escherichia coli genomes contain a large variety of characterised and putative CU fimbrial operons, however, the classification and annotation of individual loci remains problematic. Here we describe a classification model based on usher phylogeny and genomic locus position to categorise the CU fimbrial types of E. coli. Using the BLASTp algorithm, an iterative usher protein search was performed to identify CU fimbrial operons from 35 E. coli (and one Escherichia fergusonnii) genomes representing different pathogenic and phylogenic lineages, as well as 132 Escherichia spp. plasmids. A total of 458 CU fimbrial operons were identified, which represent 38 distinct fimbrial types based on genomic locus position and usher phylogeny. The majority of fimbrial operon types occupied a specific locus position on the E. coli chromosome; exceptions were associated with mobile genetic elements. A group of core-associated E. coli CU fimbriae were defined and include the Type 1, Yad, Yeh, Yfc, Mat, F9 and Ybg fimbriae. These genes were present as intact or disrupted operons at the same genetic locus in almost all genomes examined. Evaluation of the distribution and prevalence of CU fimbrial types among different pathogenic and phylogenic groups provides an overview of group specific fimbrial profiles and insight into the ancestry and evolution of CU fimbriae in E. coli.  相似文献   

6.
Studies on the potential virulence genes of the ovine footrot pathogen Dichelobacter nodosus have been hindered by the lack of a genetic system for this organism. In an attempt to accomplish the transformation of D. nodosus cells, we constructed a plasmid that contained part of a native D. nodosus plasmid and carried a tetracycline resistance gene that was located between the D. nodosus rrnA promoter and terminator. This plasmid was used to transform several D. nodosus strains to tetracycline resistance. Analysis of two independent transformants from each parental strain showed that in nearly all of these derivatives, the plasmid was not replicating independently, but that the tetracycline resistance gene had inserted by homologous recombination into one of the three rrn operons located on the chromosome. In most of the transformants, double reciprocal crossover events had occurred. These results are highly significant for genetic studies in D. nodosus and for footrot pathogenesis studies, since by using reverse genetics it will now be possible to examine the role of putative D. nodosus-encoded virulence genes in the disease process.  相似文献   

7.
8.
Variation in the internal transcribed spacer (ITS) of the rRNA (rrn) operon is increasingly used to infer population-level diversity in bacterial communities. However, intragenomic ITS variation may skew diversity estimates that do not correct for multiple rrn operons within a genome. This study characterizes variation in ITS length, tRNA composition, and intragenomic nucleotide divergence across 155 Bacteria genomes. On average, these genomes encode 4.8 rrn operons (range: 2–15) and contain 2.4 unique ITS length variants (range: 1–12) and 2.8 unique sequence variants (range: 1–12). ITS variation stems primarily from differences in tRNA gene composition, with ITS regions containing tRNA-Ala + tRNA-Ile (48% of sequences), tRNA-Ala or tRNA-Ile (10%), tRNA-Glu (11%), other tRNAs (3%), or no tRNA genes (27%). Intragenomic divergence among paralogous ITS sequences grouped by tRNA composition ranges from 0% to 12.11% (mean: 0.94%). Low divergence values indicate extensive homogenization among ITS copies. In 78% of alignments, divergence is <1%, with 54% showing zero variation and 81% containing at least two identical sequences. ITS homogenization occurs over relatively long sequence tracts, frequently spanning the entire ITS, and is largely independent of the distance (basepairs) between operons. This study underscores the potential contribution of interoperon ITS variation to bacterial microdiversity studies, as well as unequivocally demonstrates the pervasiveness of concerted evolution in the rrn gene family. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Reviewing Editor: Dr. Margaret Riley  相似文献   

9.
10.
Using a luxAB reporter transposon, seven mutants of Sinorhizobium meliloti were identified as containing insertions in four cold shock loci. LuxAB activity was strongly induced (25- to 160-fold) after a temperature shift from 30 to 15°C. The transposon and flanking host DNA from each mutant was cloned, and the nucleic acid sequence of the insertion site was determined. Unexpectedly, five of the seven luxAB mutants contained transposon insertions in the 16S and 23S rRNA genes of two of the three rrn operons of S. meliloti. Directed insertion of luxAB genes into each of the three rrn operons revealed that all three operons were similarly affected by cold shock. Two other insertions were found to be located downstream of a homolog of the major Escherichia coli cold shock gene, cspA. Although the cold shock loci were highly induced in response to a shift to low temperature, none of the insertions resulted in a statistically significant decrease in growth rate at 15°C.  相似文献   

11.
Biodiversity estimates based on ribosomal operon sequence diversity rely on the premise that a sequence is characteristic of a single specific taxon or operational taxonomic unit (OTU). Here, we have studied the sequence diversity of 14 ribosomal RNA operons (rrn) contained in the genomes of two isolates (five operons in each genome) and four metagenomic fosmids, all from the same seawater sample. Complete sequencing of the isolate genomes and the fosmids establish that they represent strains of the same species, Alteromonas macleodii, with average nucleotide identity (ANI) values >97 %. Nonetheless, we observed high levels of intragenomic heterogeneity (i.e., variability between operons of a single genome) affecting multiple regions of the 16S and 23S rRNA genes as well as the internally transcribed spacer 1 (ITS-1) region. Furthermore, the ribosomal operons exhibited intergenomic heterogeneity (i.e., variability between operons located in separate genomes) in each of these regions, compounding the variability. Our data reveal the extensive heterogeneity observed in natural populations of A. macleodii at a single point in time and support the idea that distinct lineages of A. macleodii exist in the deep Mediterranean. These findings highlight the potential of rRNA fingerprinting methods to misrepresent species diversity while simultaneously failing to recognize the ecological significance of individual strains.  相似文献   

12.
Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution may be driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although genes within operons are usually closely spaced because of a neutral bias toward deletion and because of selection against large overlaps, genes in highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution may be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.  相似文献   

13.
The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).  相似文献   

14.
Operons are a hallmark of the genomic and regulatory architecture of prokaryotes. However, the mechanism by which two genes placed far apart gradually come close and form operons remains to be elucidated. Here, we propose a new model of the origin of operons: Mobile genetic elements called insertion sequences can facilitate the formation of operons by consecutive insertion–deletion–excision reactions. This mechanism barely leaves traces of insertion sequences and thus difficult to detect in nature. In this study, as a proof-of-concept, we reproducibly demonstrated operon formation in the laboratory. The insertion sequence IS3 and the insertion sequence excision enhancer are genes found in a broad range of bacterial species. We introduced these genes into insertion sequence-less Escherichia coli and found that, supporting our hypothesis, the activity of the two genes altered the expression of genes surrounding IS3, closed a 2.7 kb gap between a pair of genes, and formed new operons. This study shows how insertion sequences can facilitate the rapid formation of operons through locally increasing the structural mutation rates and highlights how coevolution with mobile elements may shape the organization of prokaryotic genomes and gene regulation.  相似文献   

15.
This work describes the novel use of tolC as a selectable/counter-selectable marker for the facile modification of DNA in Escherichia coli. Expression of TolC (an outer membrane protein) confers relative resistance to toxic small molecules, while its absence renders the cell tolerant to colicin E1. These features, coupled with the λredgam recombination system, allow for selection of tolC insertions/deletions anywhere on the E. coli chromosome or on plasmid DNA. This methodology obviates the need for minimal growth media, specialized wash protocols and the lengthy incubation times required by other published recombineering methods. As a rigorous test of the TolC selection system, six out of seven 23S rRNA genes were consecutively and seamlessly removed from the E. coli chromosome without affecting expression of neighboring genes within the complex rrn operons. The resulting plasmid-free strain retains one 23S rRNA gene (rrlC) in its natural location on the chromosome and is the first mutant of its kind. These new rRNA mutants will be useful in the study of rRNA gene regulation and ribosome function. Given its high efficiency, low background and facility in rich media, tolC selection is a broadly applicable method for the modification of DNA by recombineering.  相似文献   

16.
Kitasatospora setae NBRC 14216T (=KM-6054T) is known to produce setamycin (bafilomycin B1) possessing antitrichomonal activity. The genus Kitasatospora is morphologically similar to the genus Streptomyces, although they are distinguishable from each other on the basis of cell wall composition and the 16S rDNA sequence. We have determined the complete genome sequence of K. setae NBRC 14216T as the first Streptomycetaceae genome other than Streptomyces. The genome is a single linear chromosome of 8 783 278 bp with terminal inverted repeats of 127 148 bp, predicted to encode 7569 protein-coding genes, 9 rRNA operons, 1 tmRNA and 74 tRNA genes. Although these features resemble those of Streptomyces, genome-wide comparison of orthologous genes between K. setae and Streptomyces revealed smaller extent of synteny. Multilocus phylogenetic analysis based on amino acid sequences unequivocally placed K. setae outside the Streptomyces genus. Although many of the genes related to morphological differentiation identified in Streptomyces were highly conserved in K. setae, there were some differences such as the apparent absence of the AmfS (SapB) class of surfactant protein and differences in the copy number and variation of paralogous components involved in cell wall synthesis.  相似文献   

17.

Background

Streptomyces are widespread bacteria that contribute to the terrestrial carbon cycle and produce the majority of clinically useful antibiotics. While interspecific genomic diversity has been investigated among Streptomyces, information is lacking on intraspecific genomic diversity. Streptomyces pratensis has high rates of homologous recombination but the impact of such gene exchange on genome evolution and the evolution of natural product gene clusters remains uncharacterized.

Results

We report draft genome sequences of four S. pratensis strains and compare to the complete genome of Streptomyces flavogriseus IAF-45-CD (=ATCC 33331), a strain recently reclassified to S. pratensis. Despite disparate geographic origins, the genomes are highly similar with 85.9% of genes present in the core genome and conservation of all natural product gene clusters. Natural products include a novel combination of carbapenem and beta-lactamase inhibitor gene clusters. While high intraspecies recombination rates abolish the phylogenetic signal across the genome, intraspecies recombination is suppressed in two genomic regions. The first region is centered on an insertion/deletion polymorphism and the second on a hybrid NRPS-PKS gene. Finally, two gene families accounted for over 25% of the divergent genes in the core genome. The first includes homologs of bldB (required for spore development and antibiotic production) while the second includes homologs of an uncharacterized protein with a helix-turn-helix motif (hpb). Genes from these families co-occur with fifteen pairs spread across the genome. These genes have evidence for co-evolution of co-localized pairs, supporting previous assertions that these genes may function akin to a toxin-antitoxin system.

Conclusions

S. pratensis genomes are highly similar with exceptional levels of recombination which erase phylogenetic signal among strains of the species. This species has a large core genome and variable terminal regions that are smaller than those found in interspecies comparisons. There is no geographic differentiation between these strains, but there is evidence for local linkage disequilibrium affecting two genomic regions. We have also shown further observational evidence that the DUF397-HTH (bldB and hpb) are a novel toxin-antitoxin pair.  相似文献   

18.
19.
A 6.0-kb SalI DNA fragment containing an entire rRNA operon (rrnB) was cloned from a cosmid gene bank of the phytopathogenic strain Rhodococcus fascians D188. The nucleotide sequence of the 6-kb fragment was determined and had the organization 16S rRNA-spacer-23S rRNA-spacer-5S rRNA without tRNA-encoding genes in the spacer regions. The 5′ and 3′ ends of the mature 16S, 23S, and 5S rRNAs were determined by alignment with the rrn operons of Bacillus subtilis and other gram-positive bacteria. Four copies of the rrn operons were identified by hybridization with an rrnB probe in R. fascians type strain ATCC 12974 and in the virulent strain R. fascians D188. However, another isolate, CECT 3001 (= NRRL B15096), also classified as R. fascians, produced five rrn-hybridizing bands. An integrative vector containing a 2.5-kb DNA fragment internal to rrnB was constructed for targeted integration of exogenous genes at the rrn loci. Transformants carrying the exogenous chloramphenicol resistance gene (cmr) integrated in different rrn operons were obtained. These transformants had normal growth rates in complex medium and minimal medium and were fully stable for the integrated marker.

Rhodococcus fascians is a gram-positive bacterium with a high G+C content belonging to the group of lower actinomycetes (14) closely related to corynebacteria. Strains of this species are of interest because they are phytopathogenic (32), causing the formation of galls on dicotyledonous plants (30) and malformations of bulbs of monocotyledonous plants (24).The molecular genetics of nonpathogenic corynebacteria have received considerable attention (for reviews see references 23 and 29), but there are no advanced recombinant DNA tools for studying molecular genetics of plant-pathogenic bacteria such as R. fascians. Several plasmids, including circular and high-molecular-weight linear plasmids, are present in strains of R. fascians (7, 11). Conjugative plasmids carrying genes determining resistance to cadmium salts (10) or chloramphenicol (12) have been characterized. One of these plasmids, pRF2, was used to develop bifunctional vectors that also replicate in Escherichia coli (12). By using these vectors, transformation of R. fascians strains has been obtained by electroporation (9, 11).Some genes associated with phytopathogenicity were found in a 200-kb linear plasmid in R. fascians D188 (7, 8). Chromosomal genes also appear to be required to produce plant disease (7). In order to clone and study additional genetic determinants involved in plant pathogenicity, there is a need to develop a system for chromosomal integration and expression of homologous or heterologous DNA in well-characterized dispensable sites of the R. fascians chromosome. As part of an effort in this direction, we characterized the nucleotide sequence and organization of an rRNA operon (rrnB) of R. fascians D188. Although the 5S rRNA gene of this species (21) and the 16S rRNA gene were amplified by PCR and used in phylogenetic analyses of gram-positive bacteria previously (26), the complete organization of the rrn operons and the number of rrn loci were not established.Gene targeting is a useful strategy for introducing exogenous genes into specific chromosomal regions. Due to their repetitive nature, rRNA operons are very suitable targets for chromosomal integration of foreign DNA fragments without modification of growth rates and viability characteristics (5). In this paper we describe the characterization of the rrnB locus and the use of rRNA-encoding regions of R. fascians D188 as target sites for integration and expression of the exogenous gene cmr, a gene conferring chloramphenicol resistance (12).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号