首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that mechanical strain in the posterior human sclera is altered with age, 20 pairs of normal eyes from human donors aged 20 to 90 years old were inflation tested within 48-h postmortem. The intact posterior scleral shells were pressurized from 5 to 45 mmHg, while the full-field three-dimensional displacements of the scleral surface were measured using laser speckle interferometry. The full strain tensor of the outer scleral surface was calculated directly from the displacement field. Mean maximum principal (tensile) strain was computed for eight circumferential sectors ( $45^{\circ }$ wide) within the peripapillary and mid-peripheral regions surrounding the optic nerve head (ONH). To estimate the age-related changes in scleral strain, results were fit using a functional mixed effects model that accounts for intradonor variability and spatial autocorrelation. Mechanical tensile strain in the peripapillary sclera is significantly higher than the strain in the sclera farther away from the ONH. Overall, strains in the peripapillary sclera decrease significantly with age. Sectorially, peripapillary scleral tensile strains in the nasal sectors are significantly higher than the temporal sectors at younger ages, but the sectorial strain pattern reverses with age, and the temporal sectors exhibited the highest tensile strains in the elderly. Overall, peripapillary scleral structural stiffness increases significantly with age. The sectorial pattern of peripapillary scleral strain reverses with age, which may predispose adjacent regions of the lamina cribrosa to biomechanical insult. The pattern and age-related changes in sectorial peripapillary scleral strain closely match those seen in disk hemorrhages and neuroretinal rim area measurement change rates reported in previous studies of normal human subjects.  相似文献   

2.
Persistent cardiac Ca2+/calmodulin‐dependent Kinase II (CaMKII) activation was considered to promote heart failure (HF) development, some studies believed that CaMKII was a target for therapy of HF. However, CaMKII was an important mediator for the ischaemia‐induced coronary angiogenesis, and new evidence confirmed that angiogenesis inhibited cardiac remodelling and improved heart function, and some conditions which impaired angiogenesis aggravated ventricular remodelling. This study aimed to investigate the roles and the underlying mechanisms of CaMKII inhibitor in cardiac remodelling. First, we induced cardiac remodelling rat model by ISO, pre‐treated by CaMKII inhibitor KN‐93, evaluated heart function by echocardiography measurements, and performed HE staining, Masson staining, Tunel staining, Western blot and RT‐PCR to test cardiac remodelling and myocardial microvessel density; we also observed ultrastructure of cardiac tissue with transmission electron microscope. Second, we cultured HUVECs, pre‐treated by ISO and KN‐93, detected cell proliferation, migration, tubule formation and apoptosis, and carried out Western blot to determine the expression of NOX2, NOX4, VEGF, VEGFR2, p‐VEGFR2 and STAT3; mtROS level was also measured. In vivo, we found KN‐93 severely reduced myocardial microvessel density, caused apoptosis of vascular endothelial cells, enhanced cardiac hypertrophy, myocardial apoptosis, collagen deposition, aggravated the deterioration of myocardial ultrastructure and heart function. In vitro, KN‐93 inhibited HUVECs proliferation, migration and tubule formation, and promoted apoptosis of HUVECs. The expression of NOX2, NOX4, p‐VEGFR2 and STAT3 were down‐regulated by KN‐93; mtROS level was severely reduced by KN‐93. We concluded that KN‐93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p‐VEGFR2 and STAT3 pathways.  相似文献   

3.
PurposeThe collagen structure of the human peripapillary sclera plays a significant role in determining optic nerve head (ONH) biomechanics, and is therefore of interest in the study of glaucoma. The aim of the current work was to map the anisotropic collagen structure of the normal human peripapillary sclera as a function of tissue depth.MethodsWide-angle x-ray scattering was used to quantify collagen fibril orientation at 0.5mm intervals across six 150μm-thick serial sections through the peripapillary sclera of eight normal European-derived human eyes. Two structural parameters were measured: 1) the relative number of fibrils preferentially aligned at a given angle within the tissue plane, 2) the degree of collagen alignment (anisotropy).ResultsThe inner-most one-third of the peripapillary scleral stroma (nearest to the choroid) was characterised by collagen fibrils either randomly arranged or preferentially aligned radially with respect to the ONH. In contrast, the outer two-thirds of the tissue was dominated by a circumferential arrangement of collagen encircling the ONH. In all tissue regions the degree of collagen anisotropy peaked in the mid-stroma and progressively decreased towards the tissue surfaces, with the largest depth variations occurring in the inferior-nasal quadrant, and the smallest occurring in the superior-nasal quadrant.ConclusionsSignificant, region-specific variations in collagen structure are present in the human peripapillary sclera as a function of depth. In normal eyes, the circumferential collagen fibril architecture is most prominent in the outer two-thirds of the stroma, possibly as a mechanical adaption to more effectively support the lamina cribrosa at the level of its insertion into the scleral canal wall.  相似文献   

4.
Polarization sensitive optical coherence tomography (PSOCT) is an interferometric technique sensitive to birefringence. Since mechanical loading alters the orientation of birefringent collagen fibrils, we asked if PSOCT can be used to measure local mechanical properties of sclera.Infrared (1300 nm) PSOCT was performed during uniaxial tensile loading of fresh scleral specimens of rabbits, cows, and humans from limbal, equatorial, and peripapillary regions. Specimens from 8 human eyes were obtained. Specimens were stretched to failure at 0.01 mm/s constant rate under physiological conditions of temperature and humidity while birefringence was computed every 117 ms from cross-sectional PSOCT. Birefringence modulus (BM) was defined as the rate of birefringence change with strain, and tensile modulus (TM) as the rate of stress change between 0 and 9% strain.In cow and rabbit, BM and TM were positively correlated with slopes of 0.17 and 0.10 GPa, and with correlation coefficients 0.63 and 0.64 (P < 0.05), respectively, following stress-optic coefficients 4.69, and 4.20 GPa−1. In human sclera, BM and TM were also positively correlated with slopes of 0.24 GPa for the limbal, 0.26 GPa for the equatorial, and 0.31 GPa for the peripapillary regions. Pearson correlation coefficients were significant at 0.51, 0.58, and 0.69 for each region, respectively (<0.001). Mean BM decreased proportionately to TM from the limbal to equatorial to peripapillary regions, as stress-optic coefficients were estimated as 2.19, 2.42, and 4.59 GPa−1, respectively.Since birefringence and tensile elastic moduli correlate differently in cow, rabbit, and various regions of human sclera, it might be possible to mechanically characterize the sclera in vivo using PSOCT.  相似文献   

5.
The aim of the study was to explore the mechanism of mesenchymal stem cell‐derived exosomes (MSC‐EXO) to protect against experimentally induced pulmonary hypertension (PH). Monocrotaline (MCT)‐induced rat model of PH was successfully established by a single intraperitoneal injection of 50 mg/kg MCT, 3 weeks later the animals were treated with MSC‐EXO via tail vein injection. Post‐operation, our results showed that MSC‐EXO could significantly reduce right ventricular systolic pressure (RVSP) and the right ventricular hypertrophy index, attenuate pulmonary vascular remodelling and lung fibrosis in vivo. In vitro experiment, the hypoxia models of pulmonary artery endothelial cell (PAEC) and pulmonary vascular smooth muscle cell (PASMC) were used. We found that the expression levels of Wnt5a, Wnt11, BMPR2, BMP4 and BMP9 were increased, but β‐catenin, cyclin D1 and TGF‐β1 were decreased in MSC‐EXO group as compared with MCT or hypoxia group in vivo or vitro. However, these increased could be blocked when cells were transfected with Wnt5a siRNA in vitro. Taken together, these results suggested that the mechanism of MSC‐EXO to prevent PH vascular remodelling may be via regulation of Wnt5a/BMP signalling pathway.  相似文献   

6.
MOTS‐c, a mitochondrial‐derived peptide (MDP), has been shown to have multiple biological activities such as antioxidation, anti‐inflammation, and anti‐apoptosis properties. In the present study, we aimed at evaluating the therapeutic effect of MOTS‐c peptide in an animal model of heart failure. The heart failure mouse model was made by transverse aortic constriction (TAC) operations. The MOTS‐c peptide was administrated subcutaneously by using an osmotic pump. At the end of the animal experiment, cardiac function was evaluated by echocardiography, and heart tissues were subjected to histological and molecular analysis. In vitro cultured H9C2 cells were used to test the effects of MOTS‐c overexpression on cell death in response to H2O2 stimulation. Our study showed that MOTS‐c peptide attenuated TAC‐induced cardiac dysfunction and remodelling. In addition, the MOTS‐c peptide reduced the inflammatory response and upregulated the antioxidant capacity, coupled with the activation of the AMPK pathway in the heart of the TAC mouse model. In in vitro cultured cardiac cells, overexpression of MOTS‐c was shown to activate the AMPK pathway and protect cell apoptosis in response to H2O2 stimulation. Taken together, our study suggested that MOTS‐c peptides may have therapeutic potential in treating HF.  相似文献   

7.
This paper presents a computational modeling study of the effects of the collagen fiber structure on the mechanical response of the sclera and the adjacent optic nerve head (ONH). A specimen-specific inverse finite element method was developed to determine the material properties of two human sclera subjected to full-field inflation experiments. A distributed fiber model was applied to describe the anisotropic elastic behavior of the sclera. The model directly incorporated wide-angle X-ray scattering measurements of the anisotropic collagen structure. The converged solution of the inverse method was used in micromechanical studies of the mechanical anisotropy of the sclera at different scales. The effects of the scleral collagen fiber structure on the ONH deformation were evaluated by progressively filtering out local anisotropic features. It was found that the majority of the midposterior sclera could be described as isotropic without significantly affecting the mechanical response of the tissues of the ONH. In contrast, removing local anisotropic features in the peripapillary sclera produced significant changes in scleral canal expansion and lamina cribrosa deformation. Local variations in the collagen structure of the peripapillary sclera significantly influenced the mechanical response of the ONH.  相似文献   

8.
ObjectivesAlcohol consumption is one of the leading factors contributing to premature osteopenia. MicroRNA (miRNA) coordinates a cascade of anabolic and catabolic processes in bone homeostasis and dynamic vascularization. The aim was to investigate the protective role of miR‐4286 in alcohol‐induced bone loss and its mechanism.Materials and MethodsThe effect of miR‐4286 and alcohol on bone mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) was explored via multiple in vitro assays, including cell proliferation, QPCR, Western blot, osteogenesis, angiogenesis etc miR‐4286 directly regulated HDAC3 was investigated by luciferase reporter assay, and the function of HDAC3 was also explored in vitro. Moreover, alcohol‐induced bone loss in mice was established to reveal the preventive effect of miR‐4286 by radiographical and histopathological assays.ResultsIn vitro, ethanol dramatically inhibited the proliferation and osteogenesis of BMSCs, and substantially impaired the proliferation and vasculogenesis of HUVECs. However, a forced overexpression of miR‐4286 within BMSCs and HUVECs could largely abolish inhibitory effects by alcohol. Furthermore, alcohol‐induced inhibition on osteogenic and vasculogenic functions was mediated by histone deacetylase 3 (HDAC3), and dual‐luciferase reporter assay showed that HDAC3 was the direct binding target of miR‐4286. In vivo, micro‐CT scanning and histology assessment revealed that miR‐4286 could prevent alcohol‐induced bone loss.ConclusionsWe firstly demonstrated that miR‐4286 might function via intimate osteogenesis‐angiogenesis pathway to alleviate alcohol‐induced osteopenia via targeting HDAC3.  相似文献   

9.
This study is to investigate the inhibitory effects and mechanisms of DEK‐targeting aptamer (DTA‐64) on epithelial mesenchymaltransition (EMT)‐mediated airway remodelling in mice and human bronchial epithelial cell line BEAS‐2B. In the ovalbumin (OVA)‐induced asthmatic mice, DTA‐64 significantly reduced the infiltration of eosinophils and neutrophils in lung tissue, attenuated the airway resistance and the proliferation of goblet cells. In addition, DTA‐64 reduced collagen deposition, transforming growth factor 1 (TGF‐β1) level in BALF and IgE levels in serum, balanced Th1/Th2/Th17 ratio, and decreased mesenchymal proteins (vimentin and α‐SMA), as well as weekend matrix metalloproteinases (MMP‐2 and MMP‐9) and NF‐κB p65 activity. In the in vitro experiments, we used TGF‐β1 to induce EMT in the human epithelial cell line BEAS‐2B. DEK overexpression (ovDEK) or silencing (shDEK) up‐regulated or down‐regulated TGF‐β1 expression, respectively, on the contrary, TGF‐β1 exposure had no effect on DEK expression. Furthermore, ovDEK and TGF‐β1 synergistically promoted EMT, whereas shDEK significantly reduced mesenchymal markers and increased epithelial markers, thus inhibiting EMT. Additionally, shDEK inhibited key proteins in TGF‐β1‐mediated signalling pathways, including Smad2/3, Smad4, p38 MAPK, ERK1/2, JNK and PI3K/AKT/mTOR. In conclusion, the effects of DTA‐64 against EMT of asthmatic mice and BEAS‐2B might partially be achieved through suppressing TGF‐β1/Smad, MAPK and PI3K signalling pathways. DTA‐64 may be a new therapeutic option for the management of airway remodelling in asthma patients.  相似文献   

10.
The aim of present study is to investigate whether Ferulic acid (FA), a natural polyphenol antioxidant, was able to protect ARPE‑19 cells from hydrogen peroxide (H2O2)‑induced damage, and elucidate the underlying mechanisms. Our results revealed that FA pre‐treatment for 24 hours can reverse cell loss of H2O2‐induced ARPE‐19 cells via the promotion of cell proliferation and prevention of apoptosis, as evidenced by 5‐ethynyl‐2′‐deoxyuridine (EdU) incorporation and terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labelling (TUNEL) assay, respectively. Moreover, the addition of FA (5 mM) can decrease Bax and cleaved caspase‐3 protein expression, but increase Bcl‐2 protein expression in ARPE‐19 cells. Furthermore, H2O2‐induced oxidative stress in ARPE‐19 cells was significantly alleviated by FA, illustrated by reduced levels of ROS and MDA. In addition, the attenuated antioxidant enzymes activities of (SOD, CAT and GPX) and GSH level were reversed almost to the normal base level by the pre‐addition of FA for 24 hours. In all assays, FA itself did not exert any effect on the change of the above parameters. These novel findings indicated that FA effectively protected human ARPE‐19 cells from H2O2‐induced oxidative damage through its pro‐proliferation, anti‐apoptosis and antioxidant activity, suggesting that FA has a therapeutic potential in the prevention and treatment of AMD.  相似文献   

11.
The persistent transactivation of epidermal growth factor receptor (EGFR) causes subsequent activation of the TGF‐β/Smad3 pathway, which is closely associated with fibrosis and cell proliferation in diabetic nephropathy (DN), but the exact mechanism of persistent EGFR transactivation in DN remains unclear. ARAP1, a susceptibility gene for type 2 diabetes, can regulate the endocytosis and ubiquitination of membrane receptors, but the effect of ARAP1 and its natural antisense long non‐coding RNA (lncRNA), ARAP1‐AS2, on the ubiquitination of EGFR in DN is not clear. In this study, we verified that the expression of ARAP1 and ARAP1‐AS2 was significantly up‐regulated in high glucose‐induced human proximal tubular epithelial cells (HK‐2 cells). Moreover, we found that overexpression or knockdown of ARAP1‐AS2 could regulate fibrosis and HK‐2 cell proliferation through EGFR/TGF‐β/Smad3 signalling. RNA pulldown assays revealed that ARAP1‐AS2 directly interacts with ARAP1. Coimmunoprecipitation, dual‐immunofluorescence and ubiquitination assays showed that ARAP1 may maintain persistent EGFR activation by reducing EGFR ubiquitination through competing with Cbl for CIN85 binding. Taken together, our results suggest that the lncRNA ARAP1‐AS2 may promote high glucose‐induced proximal tubular cell injury via persistent EGFR/TGF‐β/Smad3 pathway activation by interacting with ARAP1.  相似文献   

12.
13.
14.
ObjectivesHigh‐mobility group box‐1 (HMGB1) and aberrant mitochondrial fission mediated by excessive activation of GTPase dynamin‐related protein 1 (Drp1) have been found to be elevated in patients with pulmonary arterial hypertension (PAH) and critically implicated in PAH pathogenesis. However, it remains unknown whether Drp1‐mediated mitochondrial fission and which downstream targets of mitochondrial fission mediate HMGB1‐induced pulmonary arterial smooth muscle cells (PASMCs) proliferation and migration leading to vascular remodelling in PAH. This study aims to address these issues.MethodsPrimary cultured PASMCs were obtained from male Sprague‐Dawley (SD) rats. We detected RNA levels by qRT‐PCR, protein levels by Western blotting, cell proliferation by Cell Counting Kit‐8 (CCK‐8) and EdU incorporation assays, migration by wound healing and transwell assays. SD rats were injected with monocrotaline (MCT) to establish PAH. Hemodynamic parameters were measured by closed‐chest right heart catheterization.ResultsHMGB1 increased Drp1 phosphorylation and Drp1‐dependent mitochondrial fragmentation through extracellular signal‐regulated kinases 1/2 (ERK1/2) signalling activation, and subsequently triggered autophagy activation, which further led to bone morphogenetic protein receptor 2 (BMPR2) lysosomal degradation and inhibitor of DNA binding 1 (Id1) downregulation, and eventually promoted PASMCs proliferation/migration. Inhibition of ERK1/2 cascade, knockdown of Drp1 or suppression of autophagy restored HMGB1‐induced reductions of BMPR2 and Id1, and diminished HMGB1‐induced PASMCs proliferation/migration. In addition, pharmacological inhibition of HMGB1 by glycyrrhizin, suppression of mitochondrial fission by Mdivi‐1 or blockage of autophagy by chloroquine prevented PAH development in MCT‐induced rats PAH model.ConclusionsHMGB1 promotes PASMCs proliferation/migration and pulmonary vascular remodelling by activating ERK1/2/Drp1/Autophagy/BMPR2/Id1 axis, suggesting that this cascade might be a potential novel target for management of PAH.  相似文献   

15.
Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens’ life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin‐1 (PC1) and polycystin‐2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non‐syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti‐PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)‐AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non‐syndromic craniosynostosis.  相似文献   

16.
This study investigated the mechanisms of migration inhibitory factor (MIF) and solute carrier family 3 member 2 (SLC3A2) in colorectal cancer progression. The levels of MIF and SLC3A2 expression in cells were measured by RT‐qPCR. SW480 and SW620 cells were transfected with sh‐MIF and sh‐SLC3A2, respectively. MIF, SLC3A2, GPX4, E‐cadherin and N‐cadherin expression were detected by immunofluorescence (IF). CCK8 and Transwell assays were performed to detect cell proliferation and migration. Co‐immunoprecipitation (CoIP) was used to measure the binding activity of MIF and SLC3A2. Finally, a nude mouse tumorigenicity assay was used to confirm the functions of MIF and SLC3A2 in colorectal cancer. Results showed that the levels of MIF and SLC3A2 expression were up‐regulated in colorectal cancer cells. Inhibition of MIF or SLC3A2 expression prevented cell proliferation, migration, epithelial‐mesenchymal transition (EMT) and invasion. In addition, knockdown of MIF and SLC3A2 promoted iron death in SW480 and SW620 cells. CoIP results showed that MIF and SLC3A2 directly interact with each other. Knockdown of both MIF and SLC3A2 inhibited tumour growth and metastasis via the AKT/GSK‐3β pathway in vivo. The Akt/GSK‐3β pathway was found to participate in regulating MIF and SLC3A2 both in vivo and in vitro. MIF and SLC3A2 might be potential biomarkers for monitoring the treatment of colorectal cancer.  相似文献   

17.
Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid‐sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT‐PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug‐resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells’ proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and β‐catenin, vimentin and fibronectin expression via the AKT/GSK‐3β/Snail pathway driven by TGFβ/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK‐3β/Snail pathway.  相似文献   

18.
Human oral squamous cell carcinoma (OSCC) is the common head and neck malignancy in the world. While surgery, radiotherapy and chemotherapy are emerging as the standard treatment for OSCC patients, the outcome is limited to the recurrence and side effects. Therefore, patients with OSCC require alternative strategies for treatment. In this study, we aimed to explore the therapeutic effect and the mode of action of the novel curcumin analog, HO‐3867, against human OSCC cells. We analysed the cytotoxicity of HO‐3867 using MTT assay. In vitro mechanic studies were performed to determine whether MAPK pathway is involved in HO‐3867 induced cell apoptosis. As the results, we found HO‐3867 suppressed OSCC cells growth effectively. The flow cytometry data indicate that HO‐3867 induce the sub‐G1 phase. Moreover, we found that HO‐3867 induced cell apoptosis by triggering formation of activated caspase 3, caspase 8, caspase 9 and PARP. After dissecting MAPK pathway, we found HO‐3867 induced cell apoptosis via the c‐Jun N‐terminal kinase (JNK)1/2 pathway. Our results suggest that HO‐3867 is an effective anticancer agent as its induction of cell apoptosis through JNK1/2 pathway in human oral cancer cells.  相似文献   

19.
20.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号