首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Although the selection of coding genes during plant domestication has been well studied, the evolution of MIRNA genes (MIRs) and the interaction between microRNAs (miRNAs) and their targets in this process are poorly understood. Here, we present a genome‐wide survey of the selection of MIRs and miRNA targets during soybean domestication and improvement. Our results suggest that, overall, MIRs have higher evolutionary rates than miRNA targets. Nonetheless, they do demonstrate certain similar evolutionary patterns during soybean domestication: MIRs and miRNA targets with high expression and duplication status, and with greater numbers of partners, exhibit lower nucleotide divergence than their counterparts without these characteristics, suggesting that expression level, duplication status, and miRNA–target interaction are essential for evolution of MIRs and miRNA targets. Further investigation revealed that miRNA–target pairs that are subjected to strong purifying selection have greater similarities than those that exhibited genetic diversity. Moreover, mediated by domestication and improvement, the similarities of a large number of miRNA–target pairs in cultivated soybean populations were increased compared to those in wild soybeans, whereas a small number of miRNA–target pairs exhibited decreased similarity, which may be associated with the adoption of particular domestication traits. Taken together, our results shed light on the co‐evolution of MIRs and miRNA targets during soybean domestication.  相似文献   

9.
siRNAs from miRNA sites mediate DNA methylation of target genes   总被引:1,自引:0,他引:1  
Arabidopsis microRNA (miRNA) genes (MIR) give rise to 20- to 22-nt miRNAs that are generated predominantly by the type III endoribonuclease Dicer-like 1 (DCL1) but do not require any RNA-dependent RNA Polymerases (RDRs) or RNA Polymerase IV (Pol IV). Here, we identify a novel class of non-conserved MIR genes that give rise to two small RNA species, a 20- to 22-nt species and a 23- to 27-nt species, at the same site. Genetic analysis using small RNA pathway mutants reveals that the 20- to 22-nt small RNAs are typical miRNAs generated by DCL1 and are associated with Argonaute 1 (AGO1). In contrast, the accumulation of the 23- to 27-nt small RNAs from the miRNA-generating sites is dependent on DCL3, RDR2 and Pol IV, components of the typical heterochromatic small interfering RNA (hc-siRNA) pathway. We further demonstrate that these MIR-derived siRNAs associate with AGO4 and direct DNA methylation at some of their target loci in trans. In addition, we find that at the miRNA-generating sites, some conserved canonical MIR genes also produce siRNAs, which also induce DNA methylation at some of their target sites. Our systematic examination of published small RNA deep sequencing datasets of rice and moss suggests that this type of dual functional MIRs exist broadly in plants.  相似文献   

10.
The stepwise assembly of the highly dynamic spliceosome is guided by RNA-dependent ATPases of the DEAD-box family, whose regulation is poorly understood. In the canonical assembly model, the U4/U6.U5 triple snRNP binds only after joining of the U1 and, subsequently, U2 snRNPs to the intron-containing pre-mRNA. Catalytic activation requires the exchange of U6 for U1 snRNA at the 5′ splice site, which is promoted by the DEAD-box protein Prp28. Because Prp8, an integral U5 snRNP protein, is thought to be a central regulator of DEAD-box proteins, we conducted a targeted search in Prp8 for cold-insensitive suppressors of a cold-sensitive Prp28 mutant, prp28-1. We identified a cluster of suppressor mutations in an N-terminal bromodomain-like sequence of Prp8. To identify the precise defect in prp28-1 strains that is suppressed by the Prp8 alleles, we analyzed spliceosome assembly in vivo and in vitro. Surprisingly, in the prp28-1 strain, we observed a block not only to spliceosome activation but also to one of the earliest steps of assembly, formation of the ATP-independent commitment complex 2 (CC2). The Prp8 suppressor partially corrected both the early assembly and later activation defects of prp28-1, supporting a role for this U5 snRNP protein in both the ATP-independent and ATP-dependent functions of Prp28. We conclude that the U5 snRNP has a role in the earliest events of assembly, prior to its stable incorporation into the spliceosome.  相似文献   

11.
MicroRNA biogenesis and function in plants   总被引:33,自引:0,他引:33  
Chen X 《FEBS letters》2005,579(26):5923-5931
  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
《Trends in genetics : TIG》2023,39(5):401-414
MicroRNAs (miRNAs) play vital roles in the regulation of gene expression, a process known as miRNA-induced gene silencing. The human genome codes for many miRNAs, and their biogenesis relies on a handful of genes, including DROSHA, DGCR8, DICER1, and AGO1/2. Germline pathogenic variants (GPVs) in these genes cause at least three distinct genetic syndromes, with clinical manifestations that range from hyperplastic/neoplastic entities to neurodevelopmental disorders (NDDs). Over the past decade, DICER1 GPVs have been shown to lead to tumor predisposition. Moreover, recent findings have provided insight into the clinical consequences arising from GPVs in DGCR8, AGO1, and AGO2. Here we provide a timely update with respect to how GPVs in miRNA biogenesis genes alter miRNA biology and ultimately lead to their clinical manifestations.  相似文献   

20.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. MiRNA expression often exhibits spatial and temporal specificity. However, genome-wide miRNA expression patterns in different organs during development of Arabidopsis thaliana have not yet been systemically investigated. In this study, we sequenced small RNA libraries generated from 27 different organ/tissue types, which cover the entire life cycle of Arabidopsis. Analysis of the sequencing data revealed that most miRNAs are ubiquitously expressed, whereas a small set of miRNAs display highly specific expression patterns. In addition, different miRNA members within the same family have distinct spatial and temporal expression patterns. Moreover, we found that some miRNAs are produced from different arms of their hairpin precursors at different developmental stages. This work provides new insights into the regulation of miRNA biogenesis and a rich resource for future investigation of miRNA functions in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号