首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Antihistamines have potent efficacy to alleviate COVID-19 (Coronavirus disease 2019) symptoms such as anti-inflammation and as a pain reliever. However, the pharmacological mechanism(s), key target(s), and drug(s) are not documented well against COVID-19. Thus, we investigated to decipher the most significant components and how its research methodology was utilized by network pharmacology. The list of 32 common antihistamines on the market were retrieved via drug browsing databases. The targets associated with the selected antihistamines and the targets that responded to COVID-19 infection were identified by the Similarity Ensemble Approach (SEA), SwissTargetPrediction (STP), and PubChem, respectively. We described bubble charts, the Pathways-Targets-Antihistamines (PTA) network, and the protein–protein interaction (PPI) network on the RPackage via STRING database. Furthermore, we utilized the AutoDock Tools software to perform molecular docking tests (MDT) on the key targets and drugs to evaluate the network pharmacological perspective. The final 15 targets were identified as core targets, indicating that Neuroactive ligand–receptor interaction might be the hub-signaling pathway of antihistamines on COVID-19 via bubble chart. The PTA network was constructed by the RPackage, which identified 7 pathways, 11 targets, and 30 drugs. In addition, GRIN2B, a key target, was identified via topological analysis of the PPI network. Finally, we observed that the GRIN2B-Loratidine complex was the most stable docking score with −7.3 kcal/mol through molecular docking test. Our results showed that Loratadine might exert as an antagonist on GRIN2B via the neuroactive ligand–receptor interaction pathway. To sum up, we elucidated the most potential antihistamine, a key target, and a key pharmacological pathway as alleviating components against COVID-19, supporting scientific evidence for further research.  相似文献   

3.
More than 15 million people have been affected by coronavirus disease 2019 (COVID-19) and it has caused 640 016 deaths as of July 26, 2020. Currently, no effective treatment option is available for COVID-19 patients. Though many drugs have been proposed, none of them has shown particular efficacy in clinical trials. In this article, the relationship between the Adrenergic system and the renin-angiotensin-aldosterone system (RAAS) is focused in COVID-19 and a vicious circle consisting of the Adrenergic system-RAAS-Angiotensin converting enzyme 2 (ACE2)-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (which is referred to as the “ARAS loop”) is proposed. Hyperactivation of the ARAS loop may be the underlying pathophysiological mechanism in COVID-19, and beta-adrenergic blockers are proposed as a potential treatment option. Beta-adrenergic blockers may decrease the SARS-CoV-2 cellular entry by decreasing ACE2 receptors expression and cluster of differentiation 147 (CD147) in various cells in the body. Beta-adrenergic blockers may decrease the morbidity and mortality in COVID-19 patients by preventing or reducing acute respiratory distress syndrome (ARDS) and other complications. Retrospective and prospective clinical trials should be conducted to check the validity of the hypothesis. Also see the video abstract here https://youtu.be/uLoy7do5ROo .  相似文献   

4.
Coronavirus disease (COVID-19), caused by SARS-CoV-2, leads to symptoms ranging from asymptomatic disease to death. Although males are more susceptible to severe symptoms and higher mortality due to COVID-19, patient sex has rarely been examined. Sex-associated metabolic changes may implicate novel biomarkers and therapeutic targets to treat COVID-19. Here, using serum samples, we performed global metabolomic analyses of uninfected and SARS-CoV-2-positive male and female patients with severe COVID-19. Key metabolic pathways that demonstrated robust sex differences in COVID-19 groups, but not in controls, involved lipid metabolism, pentose pathway, bile acid metabolism, and microbiome-related metabolism of aromatic amino acids, including tryptophan and tyrosine. Unsupervised statistical analysis showed a profound sexual dimorphism in correlations between patient-specific clinical parameters and their global metabolic profiles. Identification of sex-specific metabolic changes in severe COVID-19 patients is an important knowledge source for researchers striving for development of potential sex-associated biomarkers and druggable targets for COVID-19 patients.Subject terms: Metabolomics, Immunological disorders  相似文献   

5.
The recent and sudden outbreak of monkeypox in numerous non-endemic countries requires expanding its surveillance immediately and understanding its origin and spread. As learned from the COVID-19 pandemic, appropriate detection techniques are crucial to achieving such a goal. Mass spectrometry has the advantages of a rapid response, low analytical interferences, better precision, and easier multiplexing to detect various pathogens and their variants. In this proteomic dataset, we report experimental data on the proteome of the monkeypox virus (MPXV) recorded by state-of-the-art shotgun proteomics, including data-dependent and data-independent acquisition for comprehensive coverage. We highlighted 152 viral proteins, corresponding to an overall proteome coverage of 79.5 %. Among the 1371 viral peptides detected, 35 peptides with the most intense signals in mass spectrometry were selected, representing a subset of 13 viral proteins. Their relevance as potential candidate markers for virus detection by targeted mass spectrometry is discussed. This report should assist the rapid development of mass spectrometry-based tests to detect a pathogen of increasing concern.  相似文献   

6.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic worldwide. Long non-coding RNAs (lncRNAs) are a subclass of endogenous, non-protein-coding RNA, which lacks an open reading frame and is more than 200 nucleotides in length. However, the functions for lncRNAs in COVID-19 have not been unravelled. The present study aimed at identifying the related lncRNAs based on RNA sequencing of peripheral blood mononuclear cells from patients with SARS-CoV-2 infection as well as health individuals. Overall, 17 severe, 12 non-severe patients and 10 healthy controls were enrolled in this study. Firstly, we reported some altered lncRNAs between severe, non-severe COVID-19 patients and healthy controls. Next, we developed a 7-lncRNA panel with a good differential ability between severe and non-severe COVID-19 patients using least absolute shrinkage and selection operator regression. Finally, we observed that COVID-19 is a heterogeneous disease among which severe COVID-19 patients have two subtypes with similar risk score and immune score based on lncRNA panel using iCluster algorithm. As the roles of lncRNAs in COVID-19 have not yet been fully identified and understood, our analysis should provide valuable resource and information for the future studies.  相似文献   

7.
The pathophysiology of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and especially of its complications is still not fully understood. In fact, a very high number of patients with COVID-19 die because of thromboembolic causes. A role of plasminogen, as precursor of fibrinolysis, has been hypothesized. In this study, we aimed to investigate the association between plasminogen levels and COVID-19-related outcomes in a population of 55 infected Caucasian patients (mean age: 69.8 ± 14.3, 41.8% female). Low levels of plasminogen were significantly associated with inflammatory markers (CRP, PCT, and IL-6), markers of coagulation (D-dimer, INR, and APTT), and markers of organ dysfunctions (high fasting blood glucose and decrease in the glomerular filtration rate). A multidimensional analysis model, including the correlation of the expression of coagulation with inflammatory parameters, indicated that plasminogen tended to cluster together with IL-6, hence suggesting a common pathway of activation during disease’s complication. Moreover, low levels of plasminogen strongly correlated with mortality in COVID-19 patients even after multiple adjustments for presence of confounding. These data suggest that plasminogen may play a pivotal role in controlling the complex mechanisms beyond the COVID-19 complications, and may be useful both as biomarker for prognosis and for therapeutic target against this extremely aggressive infection.Subject terms: Viral infection, Diagnostic markers  相似文献   

8.
Coronavirus disease 2019 (COVID-19) has gained prominence as a global pandemic. Studies have suggested that systemic alterations persist in a considerable proportion of COVID-19 patients after hospital discharge. We used proteomic and metabolomic approaches to analyze plasma samples obtained from 30 healthy subjects and 54 COVID-19 survivors 6 months after discharge from the hospital, including 30 non-severe and 24 severe patients. Through this analysis, we identified 1019 proteins and 1091 metabolites. The differentially expressed proteins and metabolites were then subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Among the patients evaluated, 41% of COVID-19 survivors reported at least one clinical symptom and 26.5% showed lung imaging abnormalities at 6 months after discharge. Plasma proteomics and metabolomics analysis showed that COVID-19 survivors differed from healthy control subjects in terms of the extracellular matrix, immune response, and hemostasis pathways. COVID-19 survivors also exhibited abnormal lipid metabolism, disordered immune response, and changes in pulmonary fibrosis-related proteins. COVID-19 survivors show persistent proteomic and metabolomic abnormalities 6 months after discharge from the hospital. Hence, the recovery period for COVID-19 survivors may be longer.Subject terms: Viral infection, Predictive markers  相似文献   

9.
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to more than 150 million infections and about 3.1 million deaths up to date. Currently, drugs screened are urgently aiming to block the infection of SARS-CoV-2. Here, we explored the interaction networks of kinase and COVID-19 crosstalk, and identified phosphoinositide 3-kinase (PI3K)/AKT pathway as the most important kinase signal pathway involving COVID-19. Further, we found a PI3K/AKT signal pathway inhibitor capivasertib restricted the entry of SARS-CoV-2 into cells under non-cytotoxic concentrations. Lastly, the signal axis PI3K/AKT/FYVE finger-containing phosphoinositide kinase (PIKfyve)/PtdIns(3,5)P2 was revealed to play a key role during the cellular entry of viruses including SARS-CoV-2, possibly providing potential antiviral targets. Altogether, our study suggests that the PI3K/AKT kinase inhibitor drugs may be a promising anti-SARS-CoV-2 strategy for clinical application, especially for managing cancer patients with COVID-19 in the pandemic era.  相似文献   

10.
Obesity, type 2 diabetes (T2DM), hypertension (HTN), and Cardiovascular Disease (CVD) often cluster together as “Cardiometabolic Disease” (CMD). Just under 50% of patients with CMD increased the risk of morbidity and mortality right from the beginning of the COVID-19 pandemic as it has been reported in most countries affected by the SARS-CoV2 virus.One of the pathophysiological hallmarks of COVID-19 is the overactivation of the immune system with a prominent IL-6 response, resulting in severe and systemic damage involving also cytokines such as IL2, IL4, IL8, IL10, and interferon-gamma were considered strong predictors of COVID-19 severity. Thus, in this mini-review, we try to describe the inflammatory state, the alteration of the adipokine profile, and cytokine production in the obese state of infected and not infected patients by SARS-CoV2 with the final aim to find possible influences of COVID-19 on CMD and CVD.The immunological-based discussion of the molecular processes could inspire the study of promising targets for managing CMD patients and its complications during COVID-19.  相似文献   

11.

Severe coronavirus disease (COVID-19) is currently managed with systemic glucocorticoids. Opportunistic fungal infections are of concern in such patients. While COVID-19 associated pulmonary aspergillosis is increasingly recognized, mucormycosis is rare. We describe a case of probable pulmonary mucormycosis in a 55-year-old man with diabetes, end-stage kidney disease, and COVID-19. The index case was diagnosed with pulmonary mucormycosis 21 days following admission for severe COVID-19. He received 5 g of liposomal amphotericin B and was discharged after 54 days from the hospital. We also performed a systematic review of the literature and identified seven additional cases of COVID-19 associated mucormycosis (CAM). Of the eight cases included in our review, diabetes mellitus was the most common risk factor. Three subjects had no risk factor other than glucocorticoids for COVID-19. Mucormycosis usually developed 10–14 days after hospitalization. All except the index case died. In two subjects, CAM was diagnosed postmortem. Mucormycosis is an uncommon but serious infection that complicates the course of severe COVID-19. Subjects with diabetes mellitus and multiple risk factors may be at a higher risk for developing mucormycosis. Concurrent glucocorticoid therapy probably heightens the risk of mucormycosis. A high index of suspicion and aggressive management is required to improve outcomes.

  相似文献   

12.
SARS-CoV-2 vaccinations have greatly reduced COVID-19 cases, but we must continue to develop our understanding of the nature of the disease and its effects on human immunity. Previously, we suggested that a dysregulated STAT3 pathway following SARS-Co-2 infection ultimately leads to PAI-1 activation and cascades of pathologies. The major COVID-19-associated metabolic risks (old age, hypertension, cardiovascular diseases, diabetes, and obesity) share high PAI-1 levels and could predispose certain groups to severe COVID-19 complications. In this review article, we describe the common metabolic profile that is shared between all of these high-risk groups and COVID-19. This profile not only involves high levels of PAI-1 and STAT3 as previously described, but also includes low levels of glutamine and NAD+, coupled with overproduction of hyaluronan (HA). SARS-CoV-2 infection exacerbates this metabolic imbalance and predisposes these patients to the severe pathophysiologies of COVID-19, including the involvement of NETs (neutrophil extracellular traps) and HA overproduction in the lung. While hyperinflammation due to proinflammatory cytokine overproduction has been frequently documented, it is recently recognized that the immune response is markedly suppressed in some cases by the expansion and activity of MDSCs (myeloid-derived suppressor cells) and FoxP3+ Tregs (regulatory T cells). The metabolomics profiles of severe COVID-19 patients and patients with advanced cancer are similar, and in high-risk patients, SARS-CoV-2 infection leads to aberrant STAT3 activation, which promotes a cancer-like metabolism. We propose that glutamine deficiency and overproduced HA is the central metabolic characteristic of COVID-19 and its high-risk groups. We suggest the usage of glutamine supplementation and the repurposing of cancer drugs to prevent the development of severe COVID-19 pneumonia.Subject terms: Signal transduction, Microbiology  相似文献   

13.
Lithospermum erythrorhizon (LE) is known in Korean traditional medicine for its potent therapeutic effect and antiviral activity. Currently, coronavirus (COVID-19) disease is a developing global pandemic that can cause pneumonia. A precise study of the infection and molecular pathway of COVID-19 is therefore obviously important. The compounds of LE were identified from the Natural Product Activity and Species Source (NPASS) database and screened by SwissADME. The targets interacted with the compounds and were selected using the Similarity Ensemble Approach (SEA) and Swiss Target Prediction (STP) methods. PubChem was used to classify targets linked to COVID-19. The protein–protein interaction (PPI) networks and signaling pathways–targets–bioactive compounds (STB) networks were constructed by RPackage. Lastly, we performed the molecular docking test (MDT) to verify the binding affinity between significant complexes through AutoDock 1.5.6. The Natural Product Activity and Species Source (NPASS) revealed a total of 82 compounds from LE, which interacted with 1262 targets (SEA and STP), and 249 overlapping targets were identified. The 19 final overlapping targets from the 249 targets and 356 COVID-19 targets were ultimately selected. A bubble chart exhibited that inhibition of the MAPK signaling pathway could be a key mechanism of LE on COVID-19. The three key targets (RELA, TNF, and VEGFA) directly related to the MAPK signaling pathway, and methyl 4-prenyloxycinnamate, tormentic acid, and eugenol were related to each target and had the most stable binding affinity. The three bioactive effects on the three key targets might be synergistic effects to alleviate symptoms of COVID-19 infection. Overall, this study shows that LE can play a role in alleviating COVID-19 symptoms, revealing that the three components (bioactive compounds, targets, and mechanism) are the most significant elements of LE against COVID-19. However, the promising mechanism of LE on COVID-19 is only predicted on the basis of mining data; the efficacy of the chemical compounds and the affinity between compounds and the targets in experiment was ignored, which should be further substantiated through clinical trials.  相似文献   

14.
Hypozincemia is prevalent in severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)-infected patients and has been considered as a risk factor in severe coronavirus disease-2019 (COVID-19). Whereas zinc might affect SARS-COV-2 replication and cell entry, the link between zinc deficiency and COVID-19 severity could also be attributed to the effects of COVID-19 on the body metabolism and immune response. Zinc deficiency is more prevalent in the elderly and patients with underlying chronic diseases, with established deleterious consequences such as the increased risk of respiratory infection. We reviewed the expected effects of zinc deficiency on COVID-19-related pathophysiological mechanisms focusing on both the renin–angiotensin and kinin-kallikrein systems. Mechanisms and effects were extrapolated from the available scientific literature. Zinc deficiency alters angiotensin-converting enzyme-2 (ACE2) function, leading to the accumulation of angiotensin II, des-Arg9-bradykinin and Lys-des-Arg9-bradykinin, which results in an exaggerated pro-inflammatory response, vasoconstriction and pro-thrombotic effects. Additionally, zinc deficiency blocks the activation of the plasma contact system, a protease cascade initiated by factor VII activation. Suggested mechanisms include the inhibition of Factor XII activation and limitation of high-molecular-weight kininogen, prekallikrein and Factor XII to bind to endothelial cells. The subsequent accumulation of Factor XII and deficiency in bradykinin are responsible for increased production of inflammatory mediators and marked hypercoagulability, as typically observed in COVID-19 patients. To conclude, zinc deficiency may affect both the renin–angiotensin and kinin-kallikrein systems, leading to the exaggerated inflammatory manifestations characteristic of severe COVID-19.  相似文献   

15.
Monkeypox, a zoonotic disease caused by an orthopoxvirus, results in a smallpox-like disease in humans. Since monkeypox in humans was initially diagnosed in 1970 in the Democratic Republic of the Congo (DRC), it has spread to other regions of Africa (primarily West and Central), and cases outside Africa have emerged in recent years. We conducted a systematic review of peer-reviewed and grey literature on how monkeypox epidemiology has evolved, with particular emphasis on the number of confirmed, probable, and/or possible cases, age at presentation, mortality, and geographical spread. The review is registered with PROSPERO (CRD42020208269). We identified 48 peer-reviewed articles and 18 grey literature sources for data extraction. The number of human monkeypox cases has been on the rise since the 1970s, with the most dramatic increases occurring in the DRC. The median age at presentation has increased from 4 (1970s) to 21 years (2010–2019). There was an overall case fatality rate of 8.7%, with a significant difference between clades—Central African 10.6% (95% CI: 8.4%– 13.3%) vs. West African 3.6% (95% CI: 1.7%– 6.8%). Since 2003, import- and travel-related spread outside of Africa has occasionally resulted in outbreaks. Interactions/activities with infected animals or individuals are risk behaviors associated with acquiring monkeypox. Our review shows an escalation of monkeypox cases, especially in the highly endemic DRC, a spread to other countries, and a growing median age from young children to young adults. These findings may be related to the cessation of smallpox vaccination, which provided some cross-protection against monkeypox, leading to increased human-to-human transmission. The appearance of outbreaks beyond Africa highlights the global relevance of the disease. Increased surveillance and detection of monkeypox cases are essential tools for understanding the continuously changing epidemiology of this resurging disease.  相似文献   

16.
新型冠状病毒肺炎(2019 novel coronavirus disease,COVID-19),一种由动物来源的新型冠状病毒(severe acute respiratory syndrome coronavirus 2,SRAS-CoV-2)感染所致的疾病在全球范围内急速传播,严重的危害人类的健康.快速、准确的诊...  相似文献   

17.
Background: The pandemic of novel coronavirus disease 2019 (COVID-19) has become a serious public health crisis worldwide. The symptoms of COVID-19 vary from mild to severe among different age groups, but the physiological changes related to COVID-19 are barely understood.Methods: In the present study, a high-resolution mass spectrometry (HRMS)-based lipidomic strategy was used to characterize the endogenous plasma lipids for cured COVID-19 patients with different ages and symptoms. These patients were further divided into two groups: those with severe symptoms or who were elderly and relatively young patients with mild symptoms. In addition, automated lipidomic identification and alignment was conducted by LipidSearch software. Multivariate and univariate analyses were used for differential comparison.Results: Nearly 500 lipid compounds were identified in each cured COVID-19 group through LipidSearch software. At the level of lipid subclasses, patients with severe symptoms or elderly patients displayed dramatic changes in plasma lipidomic alterations, such as increased triglycerides and decreased cholesteryl esters (ChE). Some of these differential lipids might also have essential biological functions. Furthermore, the differential analysis of plasma lipids among groups was performed to provide potential prognostic indicators, and the change in signaling pathways.Conclusions: Dyslipidemia was observed in cured COVID-19 patients due to the viral infection and medical treatment, and the discharged patients should continue to undergo consolidation therapy. This work provides valuable knowledge about plasma lipid markers and potential therapeutic targets of COVID-19 and essential resources for further research on the pathogenesis of COVID-19.  相似文献   

18.
Fungal infections remain hardly treatable because of unstandardized diagnostic tests, limited antifungal armamentarium, and more specifically, potential toxic interactions between antifungals and immunosuppressants used during anti-inflammatory therapies, such as those set up in critically ill COVID-19 patients. Taking into account pre-existing difficulties in treating vulnerable COVID-19 patients, any co-occurrence of infectious diseases like fungal infections constitutes a double debacle for patients, healthcare experts, and the public economy. Since the first appearance of SARS-CoV-2, a significant rise in threatening fungal co-infections in COVID-19 patients has been testified in the scientific literature. Better management of fungal infections in COVID-19 patients is, therefore, a priority and requires highlighting common risk factors, relationships with immunosuppression, as well as challenges in fungal diagnosis and treatment. The present review attempts to highlight these aspects in the three most identified causative agents of fungal co-infections in COVID-19 patients: Aspergillus, Candida, and Mucorales species.  相似文献   

19.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) pandemic has exhausted the health systems in many countries with thousands cases diagnosed daily. The currently used treatment guideline is to manage the common symptoms like fever and cough, but doesn’t target the virus itself or halts serious complications arising from this viral infection. Currently, SARS-CoV-2 exhibits many genetic modulations which have been associated with the appearance of highly contagious strains. The number of critical cases of COVID-19 increases markedly, and many of the infected people die as a result of respiratory failure and multiple organ dysfunction. The regenerative potential of mesenchymal stem cells (MSCs) has been extensively studied and confirmed. The impressive immunomodulation and anti-inflammatory activity of MSCs have been recognized as a golden opportunity for the treatment of COVID-19 and its associated complications. Moreover, MSCs regenerative and repairing abilities have been corroborated by many studies with positive outcomes and high recovery rates. Based on that, MSCs infusion could be an effective mechanism in managing and stemming the serious complications and multiple organ failure associated with COVID-19. In the present review, we discuss the commonly reported complications of COVID-19 viral infection and the established and anticipated role of MSCs in managing these complications.  相似文献   

20.
Orthopoxviruses are among the largest and most complex of the animal viruses. In response to the recent emergence of monkeypox in Africa and the threat of smallpox bioterrorism, two orthopoxviruses with different pathogenic potentials, human monkeypox virus and vaccinia virus, were proteomically compared with the goal of identifying proteins required for pathogenesis. Orthopoxviruses were grown in HeLa cells to two different viral forms (intracellular mature virus and extracellular enveloped virus), purified by sucrose gradient ultracentrifugation, denatured using RapiGest surfactant, and digested with trypsin. Unfractionated samples and strong cation exchange HPLC fractions were analyzed by high-resolution reversed-phase nano-LC-MS/MS, and analyses of the MS/MS spectra using SEQUEST and X! Tandem resulted in the confident identification of hundreds of monkeypox, vaccinia, and copurified host-cell proteins. The unfractionated samples were additionally analyzed by LC-MS using an LTQ-Orbitrap, and the accurate mass and elution time tag approach was used to perform quantitative comparisons. Possible pathophysiological roles of differentially abundant Orthopoxvirus proteins are discussed. Data, processed results, and protocols are available at http://www.proteomicsresource.org/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号