首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial studies on the mutagenicity and metabolism of a novel cyclopenta-PAH, benz[j]aceanthrylene, are reported in the Salmonella bacterial system. The spectrum of activity of benz[j]aceanthrylene over the 5 Ames tester strains is similar to that of benzo[a]pyrene, and the dose-response curves for strain TA98 are comparable. Like other biologically active PAH, benz[j]aceanthrylene is a frame-shift mutagen requiring metabolic activation. An interesting feature of the S9 dependence of activity is the low concentration (congruent to 10-fold smaller than for benzo[a]pyrene) at which optimal activity is observed. The 1,2-dihydro-1,2-diol (product of metabolism of the cyclopenta-ring) appears to be the predominant metabolite, and implicates the 1,2-oxide as the ultimate mutagenic species.  相似文献   

2.
Cyclopenta-fused polycyclic aromatic hydrocarbons are a class of environmental PAH that have been recently identified. Many of these chemicals have been found to be more active than benzo[a]pyrene in tests for genetic toxicity using bacterial and rodent cells. Benz[l]aceanthrylene, a cyclopenta-polycyclic aromatic hydrocarbon related to benz[a]anthracene, and benzo[a]pyrene were compared for their activity to induce cytotoxicity and anchorage-independent growth with normal human diploid fibroblasts. Both benz[l]aceanthrylene and benzo[a]pyrene were relatively non-cytotoxic to normal human diploid fibroblasts. However, benz[l]aceanthrylene was twice as active compared to benzo[a]pyrene over the concentration range examined as an inducer of anchorage-independent growth. The ability of benz[l]aceanthrylene to induce anchorage-independent colony growth in normal human cells, in combination with its demonstrated ability as a mouse-skin tumorigen, suggests this PAH to be a potential multi-species carcinogen.  相似文献   

3.
4 isomeric cyclopenta-derivatives of benz[e]anthracene (benz[a]aceanthrylene, benz[j]aceanthrylene, benz[l]aceanthrylene, and benz[k]acephenanthrylene) were examined for their ability to morphologically transform C3H10T1/2CL8 mouse-embryo fibroblasts. All of these polycyclic aromatic hydrocarbons studied except benz[k]acephenanthrylene transformed C3H10T1/2CL8 cells to both type II and type III foci in a concentration-dependent fashion. Benz[j]aceanthrylene was the most active, equivalent in activity to benzo[a]pyrene on a molar basis, in producing dishes of cells with transformed foci (94% at 1.0 microgram/ml). Benz[e]aceanthrylene, and benz[l]aceanthrylene produced 58% and 85% of the dishes with foci respectively at 10 micrograms/ml. Metabolism studies with [3H]benz[j]aceanthrylene in C3H10T1/2CL8 cells in which unconjugated, glucuronic acid conjugated, and sulfate conjugated metabolites were measured indicated that the dihydrodiol precursor to the bay-region diol-epoxide, 9,10-dihydroxy-9,10-dihydrobenz[j]aceanthrylene, was the major dihydrodiol formed (55%). Smaller quantities of the cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[j]aceanthrylene (14%), and the k-region dihydrodiol, 11,12-dihydroxy-11,12-dihydrobenz[j]aceanthrylene (5%) were also formed. Similar studies with [14C]benz[l]aceanthrylene indicated that the k-region dihydrodiol, 7,8-dihydroxy-7,8-dihydrobenz[l]aceanthrylene was the major metabolite formed (45%). The cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[l]aceanthrylene and 4,5-dihydroxy-4,5-dihydrobenz[l]aceanthrylene were formed in minor amounts (less than 6%). Therefore, metabolism at the cyclopenta-ring of B(j)A and B(l)A is a minor pathway in C3H10T1/2CL8 cells in contrast to previously reported studies with cyclopenta[cd]pyrene in which the cyclopenta-ring dihydrodiol was the major metabolite. These results suggest that routes of metabolic activation other than oxidation at the cyclopenta-ring such as bay region or k-region activation may play an important role with these unique polycyclic aromatic hydrocarbons in C3H10T1/2CL8 cells.  相似文献   

4.
Degradation of Benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1   总被引:2,自引:0,他引:2       下载免费PDF全文
Metabolism of the environmental pollutant benzo[a]pyrene in the bacterium Mycobacterium vanbaalenii PYR-1 was examined. This organism initially oxidized benzo[a]pyrene with dioxygenases and monooxygenases at C-4,5, C-9,10, and C-11,12. The metabolites were separated by reversed-phase high-performance liquid chromatography (HPLC) and characterized by UV-visible, mass, nuclear magnetic resonance, and circular dichroism spectral analyses. The major intermediates of benzo[a]pyrene metabolism that had accumulated in the culture media after 96 h of incubation were cis-4,5-dihydro-4,5-dihydroxybenzo[a]pyrene (benzo[a]pyrene cis-4,5-dihydrodiol), cis-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (benzo[a]pyrene cis-11,12-dihydrodiol), trans-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (benzo[a]pyrene trans-11,12-dihydrodiol), 10-oxabenzo[def]chrysen-9-one, and hydroxymethoxy and dimethoxy derivatives of benzo[a]pyrene. The ortho-ring fission products 4-formylchrysene-5-carboxylic acid and 4,5-chrysene-dicarboxylic acid and a monocarboxylated chrysene product were formed when replacement culture experiments were conducted with benzo[a]pyrene cis-4,5-dihydrodiol. Chiral stationary-phase HPLC analysis of the dihydrodiols indicated that benzo[a]pyrene cis-4,5-dihydrodiol had 30% 4S,5R and 70% 4R,5S absolute stereochemistry. Benzo[a]pyrene cis-11,12-dihydrodiol adopted an 11S,12R conformation with 100% optical purity. The enantiomeric composition of benzo[a]pyrene trans-11,12-dihydrodiol was an equal mixture of 11S,12S and 11R,12R molecules. The results of this study, in conjunction with those of previously reported studies, extend the pathways proposed for the bacterial metabolism of benzo[a]pyrene. Our study also provides evidence of the stereo- and regioselectivity of the oxygenases that catalyze the metabolism of benzo[a]pyrene in M. vanbaalenii PYR-1.  相似文献   

5.
Addition of primary organic amines, such as n-butylamine, to the mobile phase altered the capacity factors and selectivity of benzo[a]pyrene metabolites obtained with reverse-phase high pressure liquid chromatography on an ODS column. Separation of benzo[a]pyrene phenols in particular was improved with 8 of the 10 available metabolites resolved, including those known to be biologically produced. The method offers sufficiently improved resolution or convenience that it should prove useful in comparative studies of metabolism of benzo[a]-pyrene and other polynuclear aromatic hydrocarbons. Applying the method to analysis of benzo[a]pyrene metabolites produced in vitro by hepatic microsomes from the marine fish Stenotomus versicolor indicated the principal phenolic derivatives produced by this fish were 1-hydroxy-, 3-hydroxy-, 7-hydroxy-, and 9-hydroxybenzo[a]pyrene.  相似文献   

6.
We previously hypothesized that polycyclic aromatic hydrocarbon (PAH)-degrading bacteria that produce laccase may enhance the degree of benzo[a]pyrene mineralization. However, whether the metabolites of benzo[a]pyrene oxidized by laccase can be further transformed by PAH degraders remains unknown. In this study, pyrene-degrading mycobacteria with diverse degradation properties were isolated and employed for investigating the subsequent transformation on the metabolites of benzo[a]pyrene oxidized by fungal laccase of Trametes versicolor. The results confirm the successive transformation of benzo[a]pyrene metabolites, 6-benzo[a]pyrenyl acetate, and quinones by Mycobacterium strains, and report the discovery of the involvement of a O-methylation mediated pathway in the process. In detail, the vast majority of metabolite 6-benzo[a]pyrenyl acetate was transformed into benzo[a]pyrene quinones or methoxybenzo[a]pyrene, via two distinct steps that were controlled by the catechol-O-methyltransferase mediated O-methylation, while quinones were reduced to dihydroxybenzo[a]pyrene and further transformed into dimethoxy derivatives.  相似文献   

7.
In order to determine the possible mechanisms of interactions of monoclonal antibody B2 with haptens and early synthesized peptide-mimotope of benzo[a]pyrene using the phage display method, amino acid sequences of variable fragments of heavy and light chains are determined and a model of Fab-fragment is constructed. The structure of the antibody active center is determined using molecular docking with polycyclic aromatic hydrocarbons. It is identified that the active center of monoclonal antibody B2 brings the two pockets of binding. The correlation between preliminarily obtained experimental data on the cross-reactivity of monoclonal antibody B2 with some ligands and calculated bond energy is found. It is shown that synthetic peptide-mimotope of benzo[a]pyrene is weak competing with the conjugate of benzo[a]pyrene for binding with monoclonal antibody B2. The immunization of mice with the conjugate of peptide and bovine serum albumin results in creation of antibodies to benz[a]anthracene and anthracene but not to benzo[a]pyrene. The model of peptide-mimotope of benzo[a]pyrene from pIII protein of bacteriophage is built. It is determined that tryptophan included into peptide composition can be exposed on the surface and be available for antibody. The data of modeling obtained in this study can be applicable for further optimization as both the structure of peptide-mimotope of benzo[a]pyrene and for active center of monoclonal antibody B2.  相似文献   

8.
9.
10.
Investigations on the metabolism of 3H-labelled chrysene, benz[a]anthracene, 7-methylbenz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, benzo[a]pyrene, dibenz[a,c]anthracene and dibenz[a,h]anthracene by mouse skin maintained in short-term organ culture were carried out. Estimations of the distribution of the metabolites of each hydrocarbon present after 24 h showed that there were wide variations both in the rates at which the hydrocarbons were metabolised and in the amounts of metabolites covalently bound to skin macromolecules. All the hydrocarbons were metabolised to dihydrodiols, which were identified by comparison on high pressure liquid chromatography (HPLC) with the authentic compounds, and these were the same diols as those that were formed in previous experiments with rat-liver microsomal fractions. However, free dihydrodiols represented only relatively small proportions of the total amounts of metabolites formed. All the hydrocarbons yielded dihydrodiols of the type that could give rise to bay-region diol-epoxides, when further metabolised, some of which are thought to be involved in hydrocarbon carcinogenesis.  相似文献   

11.
The metabolism of [14C]benzo[a]pyrene by microsomes from the lungs of normal and 3-methylcholanthrene-treated DBA/2J, C57BL/6J, and A/HeJ mouse strains was quantitatively analyzed by high-pressure liquid chromatography. The ratio of dihydrodiols of benzo[a]pyrene to total metabolites formed was greater with lung microsomes than with liver microsomes in all three strains. The ratio of epoxide hydrase to monooxygenase activity in mouse lung was shown to be considerably higher than in mouse liver. Benzo[a]pyrene metabolism by control lung microsomes showed some strain differences. C57BL/6J and A/HeJ mice formed twice as much dihydrodiols as a percentage of total metabolism compared to DBA/2J mice. DBA/2J mice produced somewhat less phenol 2 fraction and considerably more quinone 1 and 2 fractions than the other two mouse strains as a percentage of total metabolism. Treatment of C57BL/6J and DBA/2J mice with 3-methylcholanthrene resulted in a 20-fold increase in the metabolism of benzo[a]pyrene, while A/HeJ mice were induced more than 50-fold. The profiles of metabolites from the 3-methylcholanthrene-induced animals were nearly identical in all three mouse strains.  相似文献   

12.
The induction of nuclear aberrations (NA) (apoptotic bodies and micronuclei) in duodenal crypts in a dose-dependent manner was associated with administration of agents known to induce tumours in the small intestine. These included X-irradiation, N-methyl-N-nitrosourea, (MNU), benzo[a]pyrene (B[a]P), and 1,2-dimethylhydrazine (DMH), which were found to induce NA in cells in the proliferative region of crypts 24 h after they were given to mice. Methylurea (MU) and benzo[e]pyrene (B[e]P), which are non-carcinogenic structural analogues of MNU and B[a]P, respectively, did not induce NA under similar conditions. Based on these results, the ability of an agent to induce NA in the small intestine appears to reflect of its oncogenic potential in that organ.  相似文献   

13.
Chromosomal translocations involving anaplastic lymphoma kinase (ALK) are the driving mutations for a range of cancers and ALK is thus considered an attractive therapeutic target. We synthesized a series of functionalized benzo[4,5]imidazo[1,2-c]pyrimidines and benzo[4,5]imidazo[1,2-a]pyrazines by an aza-Graebe–Ullman reaction, followed by palladium-catalyzed cross-coupling reactions. A sequential regioselective cross-coupling route is reported for the synthesis of unsymmetrically disubstituted benzo[4,5]imidazo[1,2-a]pyrazines. The inhibition of ALK was evaluated and compound 19 in particular showed good activity against both the wild type and crizotinib-resistant L1196M mutant in vitro and in ALK-transfected BaF3 cells.  相似文献   

14.
A rapid, continuous, and highly sensitive fluorescence assay is described for the measurement of epoxide hydrase activity. The method is based on the large differences between the fluorescence spectra of certain K-region arene oxides and their corresponding trans-dihydrodiols. Enzymatic hydration of K-region arene oxides of phenanthrene, pyrene, benzo[a]pyrene, and 7,12-dimethylbenzo[a]anthracene was studied. The assay was most sensitive with benzo[a]pyrene-4,5-oxide as substrate. With 10 μm benzo[a]pyrene-4,5-oxide, enzymatic rates of 30 pmol of dihydrodiol/min/mg of protein are three to five times those of the blank without enzyme. The fluorometric method described has been used to study site-directed inhibitors of epoxide hydrase and the stereoselective hydration of racemic arene oxides.  相似文献   

15.
Nonexhaustive extraction (propanol, butanol, hydroxypropyl-β-cyclodextrin [HPCD]), persulfate oxidation and biodegradability assays were employed to determine the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil. After 16 weeks incubation, greater than 89% of three-ring compounds (acenaphthene, anthracene, fluorene, and phenanthrene) and 21% to 79% of four-ring compounds (benz[a]anthracene, chrysene, fluoranthene, and pyrene) were degraded by the indigenous microorganisms under biopile conditions. No significant decrease in five- (benzo[a]pyrene, benzo[b+k]fluoranthene) and six-ring compounds (benz[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) was observed. Desorption of PAHs using propanol or butanol could not predict PAH biodegradability: low-molecular-weight PAH biodegradability was underestimated whereas high-molecular-weight PAH biodegradability was overestimated. Persulfate oxidation and HPCD extraction of creosote-contaminated soil was able to predict three- and four-ring PAH biodegradability; however, the biodegradability of five-ring PAHs was overestimated. These results demonstrate that persulfate oxidation and HPCD extraction are good predictors of PAH biodegradability for compounds with octanol-water partitioning coefficients of < 6.  相似文献   

16.
We have used endonuclease IV from Escherichia coli as a probe for apurinic sites in the DNA of HeLa cells following treatment with an activated diol epoxide derivative of benzo[a]pyrene. DNA strand breaks and alkali-labile sites were observed that were repaired following exposure to the carcinogenic alkylating agent. The alkali-labile sites were not substrates for the apurinic site-specific endonuclease IV. We conclude that the alkali-labile sites formed in vivo by benzo[a]pyrene derivatives are not apurinic sites and probably arise as a consequence of rearrangement of the abundant N2-guanine adducts. This finding questions the involvement of apurinic sites in the mutagenic activity of benzo[a]pyrene.  相似文献   

17.
Liver microsomes from control, 3-methylcholanthrene-treated, and phenobarbital-treated New Zealand White rabbits were examined for differences detectable by circular dichroism (CD) spectroscopy. Addition of the Type I substrate cyclohexane to phenobarbital microsomes decreases the negative ellipticity at about 418 nm and concomitantly increases the negative ellipticity at about 395 nm. Cyclohexane added to microsomes from control or 3-methylcholanthrene-treated animals shows little or no CD changes in these wavelength regions. The effect by cyclohexane is completely reversed by the subsequent addition of butanol-1. Addition of benzo[a]pyrene to phenobarbital microsomes also decreases the negative ellipticity at about 418 nm, and this effect can be completely reversed with the subsequent addition of butanol-1. The ellipticity at about 395 nm is reversed in sign and is markedly increased by benzo[a]pyrene, however, and this effect is not changed with the subsequent addition of butanol-1. Restoring the cyclohexane- or benzo[a]pyrene-induced changes by the subsequent addition of alcohol is proportional to the aliphatic chain length, with 4 or more carbon atoms being maximally effective. Primary alcohols inhibit aryl hydrocarbon (benzo[a]pyrene) hydroxylase (EC 1.14.14.2) activity of phenobarbital microsomes, and the inhibitory effect is enhanced with increasing chain length of the alcohols; 4 or more carbon atoms being maximally effective. Stimulation of monooxygenase metabolism of cyclohexane or benzo[a]pyrene by NADPH results in restoration of the negative ellipticity band at about 418 nm, whereas the ellipticity peak at about 395 nm remains unchanged. More negative ellipticity at about 210 and 222 nm is found in phenobarbital microsomes than in control or 3-methylcholanthrene microsomes and cyclohexane addition in vitro increases these negative ellipticity peaks in phenobarbital microsomes but not in control or 3-methylcholanthrene microsomes.These results show that with CD studies one can detect directly both high spin (negative ellipticity peak at 385–395 nm) and low spin (negative ellipticity peak at about 418 nm) P-450 iron in liver microsomes from control, 3-methylcholanthrene-treated, or phenobarbital-treated rabbits. These data are consistent with a weak ligand such as oxygen, rather than a stronger ligand such as nitrogen, in the sixth position of 6-coordinated (low spin) ferric iron in P-450 in vivo. Type I substrates such as cyclohexane or benzo[a]pyrene, when bound to P-450, change low spin P-450 iron to the high spin state. Cyclohexane-bound high spin P-450 iron in vitro is more easily converted to low spin iron by butanol-1 than is benzo[a]pyrene-bound high spin P-450 iron. Liver microsomal proteins from phenobarbital-treated rabbits have a higher helical content than those from either control or 3-methylcholanthrene-treated rabbits. Cyclohexane addition in vitro increases this helical character only in phenobarbital microsomes, indicating that one or more forms of phenobarbital-induced P-450 apoproteins is (are) more specific for cyclohexane binding and metabolism than control or 3-methylcholanthrene-induced forms of P-450.  相似文献   

18.
A reconstituted mixed-function oxidase system, containing the major β-naphthoflavone-induced isozyme of rat liver cytochrome P-450 bound benzo[a]pyrene covalently in the presence of NADPH. NADPH-cytochrome P-450 reductase was required for binding and a maximum rate of adduct formation was obtained at 8 units of reductase per nmol cytochrome P-450. Phosphatidylcholine inhibited this reaction. Benzo[a]pyrene was bound to the cytochrome, but not to the reductase, as shown by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Approximately 6 molecules of benzo[a]pyrene bound to each molecule cytochrome P-450 during prolonged incubations. No binding occurred when the β-naphthoflavone-induced isozyme of cytochrome P-450 was replaced by the major isozyme induced by phenobarbital, but both cytochromes incorporated benzo[a]pyrene to approximately the same extent when they were incubated together in the presence of the reductase and NADPH. Metabolically activated benzo[a]pyrene also bound covalently to purified epoxide hydrodrolase, when this enzyme was added to the reconstituted mixed-function oxidase system.  相似文献   

19.
The oxidative metabolism of benzo[a]pryrene (B[a]P) phenols catalyzed by liver microsomes in vitro leads to multiple products. High-pressure liquid chromatography analysis of the organic-soluble products formed indicates that regardless of the animal pretreatment regime, 3-hydroxy-B[a]P is metabolized to the 3,6-quinone and to a hydroxylated derivative tentatively identified as 3,9-dihyroxy-B[a]P. However, the distribution of products obtained with 9-hydroxy-B[a]P varied with animal pretreatment. A maximum of three distinct metabolites was obtained when the 9-phenol was metabolized in vitro with microsomes from phenobarbital-pretreated rats and the tentative 3,9-dihydroxy derivative was a common metabolite for all pretreatment regimes. Physical characterization, including mass spectrometry, indicates that all three products have an extra oxygen atom incorporated into their molecular structure from molecular oxygen. Studies utilizing specific inhibitors of the cytochrome P-450-dependent monooxygenase clearly suggest that the formation of dihydroxy or phenol-oxide derivatives is catalyzed by the hemoprotein, cytochrome P-450. These metabolites of the benzo[a]pyrene phenols are most likely related to the putative phenol-oxides of benzo[a]pyrene which have been demonstrated to alkylate DNA and protein. Repetitive scan difference spectrophotometric analysis of incubation mixtures containing rat liver microsomes, 3- or 9-hydroxy-B[a]P, NADPH, and oxygen shows the conversion of the phenols into products which absorb in the region from 400 to 500 nm. During and after the steady state of the reaction, it can be seen that certain of the hydroxy compounds produced are in equilibrium with their respective quinone form and may be involved in an oxygen-coupled redox cycle.  相似文献   

20.
6-Thioguanine-resistant mutants can be efficiently recovered from Chinese hamster V79 cells incubated at high cell densities in microtiter plates (103 – 104 cells/0.2 ml growth medium/0.4 cm2) when selected with 30 μM 6-thioguanine and 0.1 μg/ml phorbol-12-myristate-13-acetate, an inhibitor of metabolic cooperation among V79 cells. Mutant frequencies in the microtiter plates were calculated from a direct count of mutant colonies. After treatment of the V79 cells with the carcinogen benzo[a]pyrene in a fibroblast-mediated assay, the mutation frequencies determined with the microtiter assay system were quantitatively similar to those obtained with a conventional procedure in which selection with 6-thioguanine was performed in petri dishes. The mutagenic activities of 3 polycyclic aromatic hydrocarbons (activated in the cell-mediated assay) were assessed with the microtiter plate selection procedure. The active carcinogen benzo[a]pyrene at 1 μg/ml yielded about 100 mutants per 105 colony-forming cells. The same dose of a less active carcinogen, cyclopenta-[c,d]pyrene, yielded about 20 mutants per 105 colony-forming cells, and benz[a]anthracene, not an active carcinogen, was inactive as a mutagen at all doses tested. Because of the small requirements for growth medium and tissue culture vessels compared with other assays, this microtiter plate assay can serve as an inexpensive system for detecting the mutagenic activity of environmental chemicals in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号