首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sepsis is a life-threatening organ dysfunction syndrome, and liver is a susceptible target organ in sepsis, because the activation of inflammatory pathways contributes to septic liver injury. Oxidative stress has been documented to participate in septic liver injury, because it not only directly induces oxidative genotoxicity, but also exacerbates inflammatory pathways to potentiate damage of liver. Therefore, to ameliorate oxidative stress is promising for protecting liver in sepsis. Wogonin is the compound extracted from the medicinal plant Scutellaria baicalensis Geogi and was found to exert therapeutic effects in multiple inflammatory diseases via alleviation of oxidative stress. However, whether wogonin is able to mitigate septic liver injury remains unknown. Herein, we firstly proved that wogonin treatment could improve survival of mice with lipopolysaccharide (LPS)- or caecal ligation and puncture (CLP)-induced sepsis, together with restoration of reduced body temperature and respiratory rate, and suppression of several pro-inflammatory cytokines in circulation. Then, we found that wogonin effectively alleviated liver injury via potentiation of the anti-oxidative capacity. To be specific, wogonin activated Nrf2 thereby promoting expressions of anti-oxidative enzymes including NQO-1, GST, HO-1, SOD1 and SOD2 in hepatocytes. Moreover, wogonin-induced Nrf2 activation could suppress NF-κB-regulated up-regulation of pro-inflammatory cytokines. Ultimately, we provided in vivo evidence that wogonin activated Nrf2 signalling, potentiated anti-oxidative enzymes and inhibited NF-κB-regulated pro-inflammatory signalling. Taken together, this study demonstrates that wogonin can be the potential therapeutic agent for alleviating liver injury in sepsis by simultaneously ameliorating oxidative stress and inflammatory response through the activation of Nrf2.  相似文献   

2.
3.
4.
5.
《Phytomedicine》2014,21(12):1638-1644
Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD), which is mediated by lung infiltration with inflammatory cells, enhanced oxidative stress, and tissue destruction. Anti-malarial drug artesunate has been shown to possess anti-inflammatory and anti-oxidative actions in mouse asthma models. We hypothesized that artesunate can protect against cigarette smoke-induced acute lung injury via its anti-inflammatory and anti-oxidative properties. Artesunate was given by oral gavage to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage (BAL) fluid and lungs were collected for analyses of cytokines, oxidative damage and antioxidant activities. Bronchial epithelial cell BEAS-2B was exposed to cigarette smoke extract (CSE) and used to study the mechanisms of action of artesunate. Artesunate suppressed cigarette smoke-induced increases in BAL fluid total and differential cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Artesunate promoted anti-oxidant catalase activity and reduced NADPH oxidase 2 (NOX2) protein level in the lungs from cigarette smoke-exposed mice. In BEAS-2B cells, artesunate suppressed pro-inflammatory PI3 K/Akt and p44/42 MAPK signaling pathways, and increased nuclear Nrf2 accumulation in response to CSE. Artesunate possesses anti-inflammatory and anti-oxidative properties against cigarette smoke-induced lung injury, probably via inhibition of PI3K and p42/22 MAPK signaling pathways, augmentation of Nrf2 and catalase activities, and reduction of NOX2 level. Our data suggest that artesunate may have therapeutic potential for treating COPD.  相似文献   

6.
7.
8.
Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation of Nrf2 independently of Keap1 and NF-κB, suggesting a unique therapeutic potential of dh404 for specific targeting a Nrf2-mediated resolution of inflammation.  相似文献   

9.
10.
Inflammation is widely distributed in patients with Duchenne muscular dystrophy and ultimately leads to progressive deterioration of muscle function with chronic muscle damage, oxidative stress, and reduced oxidative capacity. NF-E2-related factor 2 (Nrf2) plays a critical role in defending against inflammation in different tissues via activation of phase II enzyme heme oxygenase-1 and inhibition of the NF-κB signaling pathway. However, the role of Nrf2 in the inflammation of dystrophic muscle remains unknown. To determine whether Nrf2 may counteract inflammation in dystrophic muscle, we treated 4-week-old male mdx mice with the Nrf2 activator sulforaphane (SFN) by gavage (2 mg/kg of body weight/day) for 4 weeks. The experimental results demonstrated that SFN treatment increased the expression of muscle phase II enzyme heme oxygenase-1 in an Nrf2-dependent manner. Inflammation in mice was reduced by SFN treatment as indicated by decreased infiltration of immune cells and expression of the inflammatory cytokine CD45 and proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the skeletal muscles of mdx mice. In addition, SFN treatment also decreased the expression of NF-κB(p65) and phosphorylated IκB kinase-α as well as increased inhibitor of κB-α expression in mdx mice in an Nrf2-dependent manner. Collectively, these results show that SFN-induced Nrf2 can alleviate muscle inflammation in mdx mice by inhibiting the NF-κB signaling pathway.  相似文献   

11.
12.
Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis.  相似文献   

13.
Chronic inflammation plays an essential role in the development of diabetic complications. Understanding the molecular mechanisms that support inflammation is a prerequisite for the design of novel anti-inflammatory therapies. These would take into consideration circulating levels of cytokines and damage-associated molecular patterns (DAMPs) that include the high mobility group box 1 (HMGB1) protein which, in part, promotes the inflammatory response through TLR4 signaling. The liver, as the source of circulating cytokines and acute-phase proteins, contributes to the control of systemic inflammation. We previously found that liver injury in streptozotocin-induced diabetic rats correlated with the level of oxidative stress, increased expression of HMGB1, and with the activation of TLR4-mediated cell death pathways. In the present work, we examined the effects of ethyl pyruvate (EP), an inhibitor of HMGB1 release/expression, on the modulation of activation of the HMGB1/TLR4 inflammatory cascade in diabetic liver. We observed that increased expression of inflammatory markers, TNF-α, IL-6, and haptoglobin in diabetic liver was associated with increased HMGB1/TLR4 interaction, activation of MAPK (p38, ERK, JNK)/NF-κB p65 and JAK1/STAT3 signaling pathways, and with decreased expression of Nrf2-regulated antioxidative enzymes. The reduction in HMGB1 expression as the result of EP administration reduced the pro-inflammatory activity of HMGB1 and exerted a protective effect on diabetic liver, which was observed as improved liver histology and antioxidant and inflammatory statuses. Our results suggest that prevention of HMGB1 release and blockage of the HMGB/TLR4 axis represents a potentially effective therapeutic strategy aimed at ameliorating diabetes-induced inflammation and ensuing liver injury.  相似文献   

14.
15.
Dopamine (DA) signaling via G protein‐coupled receptors is a multifunctional neurotransmitter and neuroendocrine–immune modulator. The DA nigrostriatal pathway, which controls the motor coordination, progressively degenerates in Parkinson''s disease (PD), a most common neurodegenerative disorder (ND) characterized by a selective, age‐dependent loss of substantia nigra pars compacta (SNpc) neurons, where DA itself is a primary source of oxidative stress and mitochondrial impairment, intersecting astrocyte and microglial inflammatory networks. Importantly, glia acts as a preferential neuroendocrine–immune DA target, in turn, counter‐modulating inflammatory processes. With a major focus on DA intersection within the astrocyte–microglial inflammatory network in PD vulnerability, we herein first summarize the characteristics of DA signaling systems, the propensity of DA neurons to oxidative stress, and glial inflammatory triggers dictating the vulnerability to PD. Reciprocally, DA modulation of astrocytes and microglial reactivity, coupled to the synergic impact of gene–environment interactions, then constitute a further level of control regulating midbrain DA neuron (mDAn) survival/death. Not surprisingly, within this circuitry, DA converges to modulate nuclear factor erythroid 2like 2 (Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/βcatenin signaling, a key pathway for mDAn neurogenesis, neuroprotection, and immunomodulation, adding to the already complex “signaling puzzle,” a novel actor in mDAn–glial regulatory machinery. Here, we propose an autoregulatory feedback system allowing DA to act as an endogenous Nrf2/Wnt innate modulator and trace the importance of DA receptor agonists applied to the clinic as immune modifiers.  相似文献   

16.
Pulmonary fibrosis (PF) can severely disrupt lung function, leading to fatal consequences. Salidroside is a principal active ingredient of Rhodiola rosea and has recently been reported to protect against lung injures. The present study was aimed at exploring its therapeutic effects on PF. Lung fibrotic injuries were induced in SD rats by a single intratracheal instillation of 5 mg/kg bleomycin (BLM). Then, these rats were administrated with 50, 100, or 200 mg/kg salidroside for 28 days. BLM-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, and pro-inflammatory cytokine release, and oxidative stress damages in lung tissues were attenuated by salidroside in a dose-dependent manner. Furthermore, salidroside was noted to inhibit IκBα phosphorylation and nuclear factor kappa B (NF-κB) p65 nuclear accumulation while activating Nrf2-antioxidant signaling in BLM-treated lungs. Downregulation of E-cadherin and upregulation of vimentin, fibronectin, and α-smooth muscle actin (α-SMA) indicated an epithelial-mesenchymal transition (EMT)-like shift in BLM-treated lungs. These changes were suppressed by salidroside. The expression of TGF-β1 and the phosphorylation of its downstream targets, Smad-2/-3, were enhanced by BLM, but weakened by salidroside. Additionally, salidroside was capable of reversing the recombinant TGF-β1-induced EMT-like changes in alveolar epithelial cells in vitro. Our study reveals that salidroside’s protective effects against fibrotic lung injuries are correlated to its anti-inflammatory, antioxidative, and antifibrotic properties.  相似文献   

17.
18.
The orphan receptor sigma-1 (sigmar-1) is a transmembrane chaperone protein expressed in both the central nervous system and in immune cells. It has been shown to regulate neuronal differentiation and cell survival, and mediates anti-inflammatory responses and immunosuppression in murine in vivo models. Since the details of these findings have not been elucidated so far, we studied the effects of the endogenous sigmar-1 ligands N,N-dimethyltryptamine (NN-DMT), its derivative 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and the synthetic high affinity sigmar-1 agonist PRE-084 hydrochloride on human primary monocyte-derived dendritic cell (moDCs) activation provoked by LPS, polyI:C or pathogen-derived stimuli to induce inflammatory responses. Co-treatment of moDC with these activators and sigma-1 receptor ligands inhibited the production of pro-inflammatory cytokines IL-1β, IL-6, TNFα and the chemokine IL-8, while increased the secretion of the anti-inflammatory cytokine IL-10. The T-cell activating capacity of moDCs was also inhibited, and dimethyltryptamines used in combination with E. coli or influenza virus as stimulators decreased the differentiation of moDC-induced Th1 and Th17 inflammatory effector T-cells in a sigmar-1 specific manner as confirmed by gene silencing. Here we demonstrate for the first time the immunomodulatory potential of NN-DMT and 5-MeO-DMT on human moDC functions via sigmar-1 that could be harnessed for the pharmacological treatment of autoimmune diseases and chronic inflammatory conditions of the CNS or peripheral tissues. Our findings also point out a new biological role for dimethyltryptamines, which may act as systemic endogenous regulators of inflammation and immune homeostasis through the sigma-1 receptor.  相似文献   

19.
LL202, a newly synthesized flavonoid derivative, has been confirmed to inhibit the mitogen-activated protein kinase pathway and activation protein-1 activation in monocytes; however, the anti-inflammatory mechanism has not been clearly studied. Uncontrolled overproduction of reactive oxygen species (ROS) has involved in oxidative damage of inflammatory bowel disease. In this study, we investigated that LL202 reduced lipopolysaccharide (LPS)-induced ROS production and malondialdehyde levels and increased superoxide dismutase, glutathione, and total antioxidant capacity in RAW264.7 cells. Mechanically, LL202 could upregulate heme oxygenase-1 (HO-1) via promoting nuclear translocation of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) to regulate LPS-induced oxidative stress in macrophages. In vivo, we validated the role of LL202 in dextran sulfate sodium- and TNBS-induced colitis models, respectively. The results showed that LL202 decreased the proinflammatory cytokine expression and regulated colonic oxidative stress by activating the Nrf2/HO-1 pathway. In conclusion, our study showed that LL202 exerts an anti-inflammatory effect by enhancing the antioxidant capacity of the Nrf2/HO-1 pathway to macrophages.  相似文献   

20.
Inflammation has been associated with the progression of many neurological diseases. Peripheral inflammation has also been vaguely linked to depression-like symptoms in animal models, but the underlying pathways that orchestrate inflammation-induced behavioral or molecular changes in the brain are still elusive. We have recently shown that intraperitoneal injections of lipopolysaccharide (LPS) to Swiss albino mice triggers systemic inflammation, leading to an activated immune response along with changes in monoamine levels in the brain. Herein we pinpoint the fundamental pathways linking peripheral inflammation and depression-like behavior in a mouse model, thereby identifying suitable targets of intervention to combat the situation. We show that LPS-induced peripheral inflammation provoked a depression-like behavior in mice and a distinct pro-inflammatory bias in the hippocampus, as evident from increased microglial activation and elevated levels of pro-inflammatory cytokines IL-6 and TNF-α, and activation of NFκB-p65 pathway. Significant alterations in Nrf2-dependent cellular redox status, coupled with altered autophagy and increased apoptosis were noticed in the hippocampus of LPS-exposed mice. We and others have previously shown that, fluoxetine (an anti-depressant) has effective anti-inflammatory and antioxidant properties by virtue of its abilities to regulate NFκB and Nrf2 signaling. We observed that treatment with fluoxetine or the Nrf2 activator tBHQ (tert-butyl hydroquinone), could reverse depression-like-symptoms and mitigate alterations in autophagy and cell death pathways in the hippocampus by activating Nrf2-dependent gene expressions. Taken together, the data suggests that systemic inflammation potentiates Nrf2-dependent changes in cell death and autophagy pathway in the hippocampus, eventually leading to major pathologic sequelae associated with depression. Therefore, targeting Nrf2 could be a novel approach in combatting depression and ameliorating its associated pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号