首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic structure and phylogeographical history of the alpine shrubs Sibiraea angustata (Rosaceae) and Sibiraea laevigata from the Qinghai–Tibetan Plateau (QTP) were investigated to identify alpine plant responses to changes in the QTP and glaciations. Fifty-five populations were analyzed using four chloroplast DNA (cpDNA) regions and (nuclear ribosomal internal transcribed spacer) nrITS sequence data. In all, 21 cpDNA haplotypes and 13 nrITS sequence types were detected. Analyses of the genetic diversity and phylogenetic relationships detected two rarely reported glacial refugia. One was the Yushu–Nangqian area, and the other consisted of the area from the Songpan Plateau to the southeastern margin of the QTP. Sibiraea species populations experienced divergent evolution and founder effects when they recolonized the QTP platform and adjacent high-altitude regions following glaciations. The divergence times of the main lineages and haplotypes were in the range of 1.60–2.58 Ma. The population size of Sibiraea species in the QTP decreased approximately 23-fold during the last 0.12 Ma, indicating that Sibiraea species were significantly affected by environmental changes in the QTP. Therefore, the rapid uplift of the QTP and subsequent glaciations likely played an important role in driving genetic divergence and population size changes of Sibiraea species in the QTP.  相似文献   

2.
Some non-structural carbohydrates, especially starch, escape ruminal fermentation, are converted into glucose, and are absorbed from the small intestine. This glucose provides an important source of energy, and its usage is more efficient than glucose from carbohydrates which are fermented as short chain fatty acids in the rumen and, subsequently, undergo hepatic gluconeogenesis. Tibetan sheep graze on the harsh Qinghai-Tibetan Plateau (QTP) all year round and their carbohydrate and energy intakes fluctuate greatly with seasonal forage availability. Consequently, a high capacity to absorb glucose from the small intestine would be particularly beneficial for Tibetan sheep to allow them to cope with the inconsistent dietary intakes. This study examined how the small intestinal morphology and sugar transporters’ expression of Tibetan and Small-tailed Han (Han) sheep respond to fluctuating energy intakes under the harsh conditions of the QTP. Han sheep graze on the QTP only in summer and are generally raised in feedlots. Twenty-four Tibetan sheep and 24 Han sheep, all wethers, were assigned randomly to four groups (n = 6 per breed/group), with each group offered a diet differing in digestible energy content: 8.21, 9.33, 10.45 and 11.57 MJ/kg DM. After 49 d, all sheep were slaughtered, tissues of the small intestine were collected, and measurements were made of the morphology and glucose transporters and the related regulation gene expressions. At intakes of low energy levels, Tibetan sheep had a greater villus surface area in the duodenum, jejunum and ileum and higher mRNA expression of sodium-dependent glucose transporter 1 in the duodenum and ileum (P < 0.05) than Han sheep. In the glucose transporter 2 (GLUT2) mediated glucose absorption pathway, Tibetan sheep had higher GLUT2 and taste receptor family 1 member 2 and 3 mRNA expressions than Han sheep in the duodenum, jejunum and ileum (P < 0.05). We concluded that the differences between breeds indicated a greater glucose absorption capacity in the small intestine of Tibetan than Han sheep, which would confer an advantage to Tibetan over Han sheep to an inconsistent energy intake on the harsh QTP. These findings suggested that ruminants raised under harsh environmental conditions with highly fluctuating dietary intakes, as is often the case in grazing ruminants worldwide, are able to absorb glucose from the small intestine to a greater extent than ruminants raised under more moderate conditions.  相似文献   

3.
Background and AimsTraditionally, local adaptation has been seen as the outcome of a long evolutionary history, particularly with regard to sexual lineages. By contrast, phenotypic plasticity has been thought to be most important during the initial stages of population establishment and in asexual species. We evaluated the roles of adaptive evolution and phenotypic plasticity in the invasive success of two closely related species of invasive monkeyflowers (Mimulus) in the UK that have contrasting reproductive strategies: M. guttatus combines sexual (seeds) and asexual (clonal growth) reproduction while M. × robertsii is entirely asexual.MethodsWe compared the clonality (number of stolons), floral and vegetative phenotype, and phenotypic plasticity of native (M. guttatus) and invasive (M. guttatus and M. × robertsii) populations grown in controlled environment chambers under the environmental conditions at each latitudinal extreme of the UK. The goal was to discern the roles of temperature and photoperiod on the expression of phenotypic traits. Next, we tested the existence of local adaptation in the two species within the invasive range with a reciprocal transplant experiment at two field sites in the latitudinal extremes of the UK, and analysed which phenotypic traits underlie potential local fitness advantages in each species.Key ResultsPopulations of M. guttatus in the UK showed local adaptation through sexual function (fruit production), while M. × robertsii showed local adaptation via asexual function (stolon production). Phenotypic selection analyses revealed that different traits are associated with fitness in each species. Invasive and native populations of M. guttatus had similar phenotypic plasticity and clonality. M. × robertsii presents greater plasticity and clonality than native M. guttatus, but most populations have restricted clonality under the warm conditions of the south of the UK.ConclusionsThis study provides experimental evidence of local adaptation in a strictly asexual invasive species with high clonality and phenotypic plasticity. This indicates that even asexual taxa can rapidly (<200 years) adapt to novel environmental conditions in which alternative strategies may not ensure the persistence of populations.  相似文献   

4.

Background

The Qinghai-Tibetan Plateau (QTP) is one of the most extensive habitats for alpine plants in the world. Climatic oscillations during the Quaternary ice age had a dramatic effect on species ranges on the QTP and the adjacent areas. However, how the distribution ranges of aquatic plant species shifted on the QTP in response to Quaternary climatic changes remains almost unknown.

Methodology and Principal Findings

We studied the phylogeography and demographic history of the widespread aquatic herb Hippuris vulgaris from the QTP and adjacent areas. Our sampling included 385 individuals from 47 natural populations of H. vulgaris. Using sequences from four chloroplast DNA (cpDNA) non-coding regions, we distinguished eight different cpDNA haplotypes. From the cpDNA variation in H. vulgaris, we found a very high level of population differentiation (G ST = 0.819) but the phylogeographical structure remained obscure (N ST = 0.853>G ST = 0.819, P>0.05). Phylogenetic analyses revealed two main cpDNA haplotype lineages. The split between these two haplotype groups can be dated back to the mid-to-late Pleistocene (ca. 0.480 Myr). Mismatch distribution analyses showed that each of these had experienced a recent range expansion. These two expansions (ca. 0.12 and 0.17 Myr) might have begun from the different refugees before the Last Glacial Maximum (LGM).

Conclusions/Significance

This study initiates a research on the phylogeography of aquatic herbs in the QTP and for the first time sheds light on the response of an alpine aquatic seed plant species in the QTP to Quaternary climate oscillations.  相似文献   

5.

Background

The Tibetan pig is one of domestic animals indigenous to the Qinghai-Tibet Plateau. Several geographically isolated pig populations are distributed throughout the Plateau. It remained an open question if these populations have experienced different demographic histories and have evolved independent adaptive loci for the harsh environment of the Plateau. To address these questions, we herein investigated ~ 40,000 genetic variants across the pig genome in a broad panel of 678 individuals from 5 Tibetan geographic populations and 34 lowland breeds.

Results

Using a series of population genetic analyses, we show that Tibetan pig populations have marked genetic differentiations. Tibetan pigs appear to be 3 independent populations corresponding to the Tibetan, Gansu and Sichuan & Yunnan locations. Each population is more genetically similar to its geographic neighbors than to any of the other Tibetan populations. By applying a locus-specific branch length test, we identified both population-specific and -shared candidate genes under selection in Tibetan pigs. These genes, such as PLA2G12A, RGCC, C9ORF3, GRIN2B, GRID1 and EPAS1, are involved in high-altitude physiology including angiogenesis, pulmonary hypertension, oxygen intake, defense response and erythropoiesis. A majority of these genes have not been implicated in previous studies of highlanders and high-altitude animals.

Conclusion

Tibetan pig populations have experienced substantial genetic differentiation. Historically, Tibetan pigs likely had admixture with neighboring lowland breeds. During the long history of colonization in the Plateau, Tibetan pigs have developed a complex biological adaptation mechanism that could be different from that of Tibetans and other animals. Different Tibetan pig populations appear to have both distinct and convergent adaptive loci for the harsh environment of the Plateau.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-834) contains supplementary material, which is available to authorized users.  相似文献   

6.
The Himalaya–Hengduan Mountain region is one of the hotspots of biodiversity research. The uplift of the Qinghai–Tibetan Plateau (QTP) and the Quaternary glaciation caused great environmental changes in this region, and the responses of many species in the QTP to the Quaternary climate are still largely unknown. The genetic structure and phylogeographical history of Gentiana crassicaulis Duthie ex Burk, an endemic Chinese alpine species in this area, were investigated based on four chloroplast fragments and internal transcribed spacer region of the nuclear ribosomal DNA (nrITS) sequences of 11 populations. The populations with highly diverse chloroplast haplotypes were mainly found at the edge of the QTP. There were two main haplotypes of nrITS clones, one shared by the Yunnan and Guizhou populations, and the other by the remaining populations. The population with the highest diversity was the Gansu population, located at the edge of the plateau. Based on molecular dating, the diversification of G. crassicaulis at the edge of the plateau occurred before the Last Glacial Maximum (LGM), and the species may have completed its expansion from the edge to the platform. Ecological niche models were conducted to predict the distributional ranges of G. crassicaulis at present, during the LGM, and during the last interglacial (LIG) period. The results demonstrated that G. crassicaulis survived on the QTP platform and at the edge during the LGM but afterward retreated from the platform to the southern edge, followed by expansion to the platform.  相似文献   

7.
The ‘third pole’ of the world is a fitting metaphor for the Himalayan–Tibetan Plateau, in allusion to its vast frozen terrain, rivalling the Arctic and Antarctic, at high altitude but low latitude. Living Tibetan and arctic mammals share adaptations to freezing temperatures such as long and thick winter fur in arctic muskox and Tibetan yak, and for carnivorans, a more predatory niche. Here, we report, to our knowledge, the first evolutionary link between an Early Pliocene (3.60–5.08 Myr ago) fox, Vulpes qiuzhudingi new species, from the Himalaya (Zanda Basin) and Kunlun Mountain (Kunlun Pass Basin) and the modern arctic fox Vulpes lagopus in the polar region. A highly hypercarnivorous dentition of the new fox bears a striking resemblance to that of V. lagopus and substantially predates the previous oldest records of the arctic fox by 3–4 Myr. The low latitude, high-altitude Tibetan Plateau is separated from the nearest modern arctic fox geographical range by at least 2000 km. The apparent connection between an ancestral high-elevation species and its modern polar descendant is consistent with our ‘Out-of-Tibet’ hypothesis postulating that high-altitude Tibet was a training ground for cold-environment adaptations well before the start of the Ice Age.  相似文献   

8.
The Qinghai–Tibetan Plateau (QTP) has the highest elevations of all biodiversity hotspots. Difficulties involved in fieldwork at high elevations cause challenges in researching mechanisms facilitating species coexistence. Herein, we investigated Snow Partridge (Lerwa lerwa) and Tibetan Snowcock (Tetraogallus tibetanus), the only two endemic Galliformes on the QTP, to understand species coexistence patterns and determine how they live in sympatry for the first time. We assembled occurrence data, estimated habitat suitability differences and the underlying factors between two species at different scales using ecological niche models. Niche overlap tests were used to investigate whether niche differences between these species allow for their coexistence. We found that elevation was the most important factor determining habitat suitability for both species. At the meso‐scale, two species have similar ecological niches with their suitable habitats lying predominantly along ridge crests. However, ridge crests were more influential for habitat suitability by L. lerwa than for that of T. tibetanus because the latter species ranges further afield than ridge crests. Thus, differences in habitat suitability between these species lead to habitat partitioning, which allows stable coexistence. At the macro‐scale, temperature and precipitation were major factors influencing habitat suitability differences between these species. Tetraogallus tibetanus extended into the hinterland of the QTP and occurred at higher elevations, where colder and drier alpine conditions are commonplace. Conversely, L. lerwa occurred along the southeastern margin of the QTP with a lower snow line, an area prone to rainy and humid habitats. Niche overlap analysis showed that habitat suitability differences between these species are not driven by niche differentiation. We concluded that the coexistence of these two pheasants under high‐elevation conditions could be an adaption to different alpine conditions.  相似文献   

9.
Mammalian genomes encode two provitamin A-converting enzymes as follows: the β-carotene-15,15′-oxygenase (BCO1) and the β-carotene-9′,10′-oxygenase (BCO2). Symmetric cleavage by BCO1 yields retinoids (β-15′-apocarotenoids, C20), whereas eccentric cleavage by BCO2 produces long-chain (>C20) apocarotenoids. Here, we used genetic and biochemical approaches to clarify the contribution of these enzymes to provitamin A metabolism. We subjected wild type, Bco1−/−, Bco2−/−, and Bco1−/−Bco2−/− double knock-out mice to a controlled diet providing β-carotene as the sole source for apocarotenoid production. This study revealed that BCO1 is critical for retinoid homeostasis. Genetic disruption of BCO1 resulted in β-carotene accumulation and vitamin A deficiency accompanied by a BCO2-dependent production of minor amounts of β-apo-10′-carotenol (APO10ol). We found that APO10ol can be esterified and transported by the same proteins as vitamin A but with a lower affinity and slower reaction kinetics. In wild type mice, APO10ol was converted to retinoids by BCO1. We also show that a stepwise cleavage by BCO2 and BCO1 with APO10ol as an intermediate could provide a mechanism to tailor asymmetric carotenoids such as β-cryptoxanthin for vitamin A production. In conclusion, our study provides evidence that mammals employ both carotenoid oxygenases to synthesize retinoids from provitamin A carotenoids.  相似文献   

10.
Concurrent infections with vector-borne pathogens affected a cattle herd in Switzerland, and one of the pathogens was identified as Babesia bigemina, which had never been observed in this country before. Therefore, a survey of the occurrence of ruminant Babesia spp. and their tick vectors in Switzerland was conducted. A total of 2,017 ticks were collected from sheep, goats, cattle, and wild ruminants (deer, roe deer, and chamois) in southern parts of Switzerland and identified morphologically. The vast majority of the ticks (99.2%) were Ixodes ricinus, but 14 ticks from sheep and goats were identified as Dermacentor marginatus and two ticks from wild ruminants were identified as Hemaphysalis punctata. PCR analyses of 700 ticks revealed the presence of Babesia divergens (n = 6), Babesia sp. genotype EU1 (n = 14), and B. major (n = 2), whose suggested occurrence was confirmed in this study by molecular analysis, and the presence of novel Babesia sp. genotype CH1 (n = 4), which is closely related to B. odocoilei and to Babesia sp. genotype RD61 reported from North America. The identification of B. divergens and B. major in ticks collected from wild ruminants cast doubt on the postulated strict host specificity of these bovine Babesia species. Furthermore, the zoonotic Babesia sp. genotype EU1 was detected in ticks collected from domestic animals but was obtained predominantly from ticks collected from wild ruminants. More than one tick containing DNA of different Babesia spp. were collected from two red deer. Hence, the role of these game animals as reservoir hosts of Babesia spp. seems to be important but requires further investigation.  相似文献   

11.
Design of antisense oligonucleotides stabilized by locked nucleic acids   总被引:24,自引:14,他引:10  
The design of antisense oligonucleotides containing locked nucleic acids (LNA) was optimized and compared to intensively studied DNA oligonucleotides, phosphorothioates and 2′-O-methyl gapmers. In contradiction to the literature, a stretch of seven or eight DNA monomers in the center of a chimeric DNA/LNA oligonucleotide is necessary for full activation of RNase H to cleave the target RNA. For 2′-O-methyl gapmers a stretch of six DNA monomers is sufficient to recruit RNase H. Compared to the 18mer DNA the oligonucleotides containing LNA have an increased melting temperature of 1.5–4°C per LNA depending on the positions of the modified residues. 2′-O-methyl nucleotides increase the Tm by only <1°C per modification and the Tm of the phosphorothioate is reduced. The efficiency of an oligonucleotide in supporting RNase H cleavage correlates with its affinity for the target RNA, i.e. LNA > 2′-O-methyl > DNA > phosphorothioate. Three LNAs at each end of the oligonucleotide are sufficient to stabilize the oligonucleotide in human serum 10-fold compared to an unmodified oligodeoxynucleotide (from t1/2 = ~1.5 h to t1/2 = ~15 h). These chimeric LNA/DNA oligonucleotides are more stable than isosequential phosphorothioates and 2′-O-methyl gapmers, which have half-lives of 10 and 12 h, respectively.  相似文献   

12.
Assessing the extent of linkage disequilibrium (LD) in natural populations of a nonmodel species has been difficult due to the lack of available genomic markers. However, with advances in genotyping and genome sequencing, genomic characterization of natural populations has become feasible. Using sequence data and SNP genotypes, we measured LD and modeled the demographic history of wild canid populations and domestic dog breeds. In 11 gray wolf populations and one coyote population, we find that the extent of LD as measured by the distance at which r2 = 0.2 extends <10 kb in outbred populations to >1.7 Mb in populations that have experienced significant founder events and bottlenecks. This large range in the extent of LD parallels that observed in 18 dog breeds where the r2 value varies from ~20 kb to >5 Mb. Furthermore, in modeling demographic history under a composite-likelihood framework, we find that two of five wild canid populations exhibit evidence of a historical population contraction. Five domestic dog breeds display evidence for a minor population contraction during domestication and a more severe contraction during breed formation. Only a 5% reduction in nucleotide diversity was observed as a result of domestication, whereas the loss of nucleotide diversity with breed formation averaged 35%.  相似文献   

13.
Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3′-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.  相似文献   

14.
A new ketoreductase useful for asymmetric synthesis of chiral alcohols was identified in the cyanobacterium Synechococcus sp. strain PCC 7942. Mass spectrometry of trypsin-digested peptides identified the protein as 3-ketoacyl-[acyl-carrier-protein] reductase (KR) (EC 1.1.1.100). The gene, referred to as fabG, was cloned, functionally expressed in Escherichia coli, and subsequently purified to homogeneity. The enzyme displayed a temperature optimum at 44°C and a broad pH optimum between pH 7 and pH 9. The NADPH-dependent KR was able to asymmetrically reduce a variety of prochiral ketones with good to excellent enantioselectivities (>99.8%). The KR showed particular high specific activity for asymmetric reduction of ethyl 4-chloroacetoacetate (38.29 ± 2.15 U mg−1) and 2′,3′,4′,5′,6′-pentafluoroacetophenone (8.57 ± 0.49 U mg−1) to the corresponding (S)-alcohols. In comparison with an established industrial enzyme like the alcohol dehydrogenase from Lactobacillus brevis, the KR showed seven-times-higher activity toward 2′,3′,4′,5′,6′-pentafluoroacetophenone, with a remarkably higher enantiomeric excess (>99.8% [S] versus 43.3% [S]).  相似文献   

15.
The interactions of pyrimidine deoxyribo- or 2′-O-methylribo-psoralen-conjugated, triplex-forming oligonucleotides, psTFOs, with a 17-bp env-DNA whose purine tract is 5′-AGAGAGAAAAAAGAG-3′, or an 18-bp gag-DNA whose purine tract is 5′-AGG GGGAAAGAAAAAA-3′, were studied over the pH range 6.0–7.5. The stability of the triplex formed by a deoxy-env-psTFO containing 5-methylcytosines and thymines decreased with increasing pH (Tm = 56°C at pH 6.0; 27°C at pH 7.5). Replacement of 5-methylcytosines with 8-oxo-adenines reduced the pH dependence, but lowered triplex stability. A 2′-O-methyl-env-psTFO containing uracil and cytosine did not form a triplex at pH 7.5. Surprisingly, replacement of the cytosines in this oligomer with 5-methylcytosines dramatically increased triplex stability (Tm = 25°C at pH 7.5), and even greater stability was achieved by selective replacement of uracils with thymines (Tm = 37°C at pH 7.5). Substitution of the contiguous 5-methylcytosines of the deoxy-gag-psTFO with 8-oxo-adenines significantly reduced pH dependence and increased triplex stability. In contrast to the behavior of env-specific TFOs, triplexes formed by 2′-O-methyl-gag-psTFOs did not show enhanced stability. Replacement of the 3′-terminal phosphodiester of the TFO with a methylphosphonate group significantly increased the resistance of both deoxy- and 2′-O-methyl-TFOs to degradation by 3′-exonucleases, while maintaining triplex stability.  相似文献   

16.

Objectives

To evaluate the association of left ventricular (LV) diastolic function and N-terminal pro-brain natriuretic peptide (NT-proBNP) with renal function in essential hypertension.

Methods

LV diastolic function was estimated by the ratio of early diastolic velocities (E) from transmitral inflow to early diastolic velocities (E′) of tissue Doppler at mitral annulus (septal corner); NT-proBNP was measured in 207 hypertensive patients (mean age 56±14 years). The subjects were classified into 3 groups: E/E′≤10 group (n = 48), 10<E/E′≤15 group (n = 109) and E/E′>15 group (n = 50). The renal function was estimated by glomerular filtration rate (GFR) with 99mTc-DTPA. GFR from 30 to 59 ml/min/1.73 m2 was defined as Stage 3 chronic kidney disease (CKD). GFR was also estimated using the modified MDRD equation. Albuminuria was defined by urinary albumin/creatinine ratio (UACR).

Results

GFR was lower and UACR was higher in E/E′ >15 group than in 10< E/E′ ≤15 group or E/E′ ≤10 group (p<0.0001), GFR was significantly negative and UACR was positive correlated with E/E′ and NT-proBNP (p<0.0001). In multivariate stepwise linear analysis, GFR had significant correlation with age (p = 0.001), gender (p = 0.003), E/E′ (p = 0.03), lgNT-proBNP (p = 0.001) and lgUACR (p = 0.01), while eGFR had no significant correlation with E/E′ or lgNT-proBNP. Multivariate logistic regression analysis, adjusted for potential confounding factors, showed that participants in E/E′>15 group were more likely to have Stage 3 CKD compared with those in E/E′≤10 group with an adjusted odds ratio of 8.31 (p = 0.0036).

Conclusions

LV diastolic function, assessed with E/E′ and NT-proBNP is associated with renal function in essential hypertension.  相似文献   

17.
The energy intake of Tibetan sheep on the harsh Qinghai–Tibetan Plateau (QTP) varies greatly with seasonal forage fluctuations and is often below maintenance requirements, especially during the long, cold winter. The liver plays a crucial role in gluconeogenesis and skeletal muscle is the primary tissue of energy expenditure in mammals. Both play important roles in energy substrate metabolism and regulating energy metabolism homeostasis of the body. This study aimed to gain insight into how skeletal muscle and liver of Tibetan sheep regulate energy substrate metabolism to cope with low energy intake under the harsh environment of the QTP. Tibetan sheep (n = 24; 48.5 ± 1.89 kg BW) were compared with Small-tailed Han sheep (n = 24; 49.2 ± 2.21 kg BW), which were allocated randomly into one of four groups that differed in dietary digestible energy densities: 8.21, 9.33, 10.45 and 11.57 MJ /kg DM. The sheep were slaughtered after a 49-d feeding period, skeletal muscle and liver tissues were collected and measurements were made of the activities of the key enzymes of energy substrate metabolism and the expressions of genes related to energy homeostasis regulation. Compared with Small-tailed Han sheep, Tibetan sheep exhibited higher capacities of propionate to glucose conversion and fatty acid oxidation and ketogenesis in the liver, higher glucose utilization efficiency in both skeletal muscle and liver, but lower activities of fatty acid oxidation and protein mobilization in skeletal muscle, especially when in negative energy balance. However, the Small-tailed Han sheep exhibited higher capacities to convert amino acids and lactate to glucose and higher levels of glycolysis and lipogenesis in the liver than Tibetan sheep. These differences in gluconeogenesis and energy substrate metabolism conferred the Tibetan sheep an advantage over Small-tailed Han sheep to cope with low energy intake and regulate whole-body energy homeostasis under the harsh environment of the QTP.  相似文献   

18.
Bovine tuberculosis (BTB) is endemic in cattle in the Ethiopian Highlands but no studies have been done so far in pastoralists in South Omo. This study assessed the prevalence of bovine tuberculosis (BTB) at an intensive interface of livestock, wildlife and pastoralists in Hamer Woreda (South Omo), Ethiopia. A cross-sectional survey including a comparative intradermal skin testing (CIDT) was conducted in 499 zebu cattle and 186 goats in 12 settlements. Sputum samples from 26 symptomatic livestock owners were cultured for TB. Fifty-one wildlife samples from 13 different species were also collected in the same area and tested with serological (lateral flow assay) and bacteriological (culture of lymph nodes) techniques. Individual BTB prevalence in cattle was 0.8% (CI: 0.3%–2%) with the >4 mm cut-off and 3.4% (CI: 2.1%–5.4%) with the >2 mm cut-off. Herd prevalence was 33.3% and 83% when using the >4 and the >2 mm cut-off respectively. There was no correlation between age, sex, body condition and positive reactors upon univariate analysis. None of the goats were reactors for BTB. Acid fast bacilli (AFB) were detected in 50% of the wildlife cultures, 79.2% of which were identified as Mycobacterium terrae complex. No M. bovis was detected. Twenty-seven percent of tested wildlife were sero-positive. Four sputum cultures (15.4%) yielded AFB positive colonies among which one was M. tuberculosis and 3 non-tuberculous mycobacteria (NTM). The prevalence of M. avium-complex (MAC) was 4.2% in wildlife, 2.5% in cattle and 0.5% in goats. In conclusion, individual BTB prevalence was low, but herd prevalence high in cattle and BTB was not detected in goats, wildlife and humans despite an intensive contact interface. On the contrary, NTMs were highly prevalent and some Mycobacterium spp were more prevalent in specific species. The role of NTMs in livestock and co-infection with BTB need further research.  相似文献   

19.
Background and AimsAn individual plant consists of different-sized shoots, each of which consists of different-sized leaves. To predict plant-level physiological responses from the responses of individual leaves, modelling this within-shoot leaf size variation is necessary. Within-plant leaf trait variation has been well investigated in canopy photosynthesis models but less so in plant allometry. Therefore, integration of these two different approaches is needed.MethodsWe focused on an established leaf-level relationship that the area of an individual leaf lamina is proportional to the product of its length and width. The geometric interpretation of this equation is that different-sized leaf laminas from a single species share the same basic form. Based on this shared basic form, we synthesized a new length-times-width equation predicting total shoot leaf area from the collective dimensions of leaves that comprise a shoot. Furthermore, we showed that several previously established empirical relationships, including the allometric relationships between total shoot leaf area, maximum individual leaf length within the shoot and total leaf number of the shoot, can be unified under the same geometric argument. We tested the model predictions using five species, all of which have simple leaves, selected from diverse taxa (Magnoliids, monocots and eudicots) and from different growth forms (trees, erect herbs and rosette herbs).Key ResultsFor all five species, the length-times-width equation explained within-species variation of total leaf area of a shoot with high accuracy (R2 > 0.994). These strong relationships existed despite leaf dimensions scaling very differently between species. We also found good support for all derived predictions from the model (R2 > 0.85).ConclusionsOur model can be incorporated to improve previous models of allometry that do not consider within-shoot size variation of individual leaves, providing a cross-scale linkage between individual leaf-size variation and shoot-size variation.  相似文献   

20.
The yak (Bos grunniens) is a long-haired bovid, endemic to the Tibetan Plateau and the adjacent high-altitude regions. The domesticated subspecies of yak (B. grunniens grunniens) are abundant and closely associated with the livelihoods of herders, while the wild subspecies of yak (B. grunniens mutus) are endangered due primarily to anthropogenic effects. The endangered status of wild yaks calls for consideration, if we are to secure its long term survival, hence this study. Here we hope to provide baseline information necessary for further research and protection of the wild yak resources. We use published data to discuss their evolution, their characteristics as well as their distribution in the Tibetan Plateau and the adjacent high-altitude regions. We were able to come up with a world wild yak distribution map, which may be useful for establishing protected areas, as well as updating the species IUCN Red List Status. From the data available, we were also able to provide an estimate of the wild yak population in China (∼22,000 wild yaks living in China), corresponding to 90% of the total world population. We further discuss the major threats to yaks, and we give some suggestions for future and sustainable conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号