首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two iron-binding fragments of Mr 36 000 and 33 000 corresponding to the N-terminal domain of rabbit serum transferrin were prepared. One iron-binding fragment of Mr 39 000 corresponding to the C-terminal domain was prepared. The N-terminal amino acid sequence of rabbit serum transferrin is: Val-Thr-Glu-Lys-Thr-Val-Asn-Trp-?-Ala-Val-Ser. One glycan unit is presented in rabbit serum transferrin and it is located in the C-terminal domain.  相似文献   

2.
A single-sited iron-binding fragment of human transferrin has been obtained by thermolysin cleavage of the protein, selectively loaded with iron in the C-terminal binding site, in a urea-containing buffer. The fragment contains carbohydrate, and hence derives from the C-terminal half of transferrin. Its metal-binding site accepts Fe3+ and Cu2+ with bicarbonate as accompanying anion, but only Fe3+ with oxalate as anion. EPR spectroscopic properties of the fragment are similar to those of the corresponding site in the intact protein. However, iron-binding by the fragment is weaker than by the C-terminal site of the intact protein, particularly at low pH, suggesting that overall as well as local protein conformation influences the metal-binding functions of the site.  相似文献   

3.
Drosophila melanogaster transferrin cDNA was cloned from an ovarian cDNA library by using a PCR fragment amplified by two primers designed from other dipteran transferrin sequences. The clone (2035 bp) encodes a protein of 641 amino acids containing a signal peptide of 29 amino acids. Like other insect transferrins, Drosophila transferrin appears to have a functional iron-binding site only in the N-terminal lobe. The C-terminal lobe lacks iron-binding residues found in other transferrins, and has large deletions which make it much smaller than functional C-terminal lobes in other transferrins. In-situ hybridization using a digoxigenin labeled transferrin cDNA probe revealed that the gene is located at position 17B1-2 on the X chromosome. Northern blot analysis showed that transferrin mRNA was present in the larval, pupal and adult stages, but was not detectable in the embryo. Iron supplementation of the diet resulted in lower levels of transferrin mRNA. When adult flies were inoculated with bacteria (Escherichia coli), transferrin mRNA synthesis was markedly increased relative to controls.  相似文献   

4.
Rabbit reticulocyte incorporation of iron from rabbit transferrin was independent of transferrin iron saturation but uptake from human transferrin was saturation dependent. Unlike human transferrin, rabbit transferrin does not surrender its iron from any unique preferred iron-binding site and can be described as functionally homogeneic.The two proteins also differ in their acid-base iron-binding properties. One human transferrin iron binding site retains an ability to bind iron at somewhat acid pH but this property is not shared by rabbit transferrin.  相似文献   

5.
Rabbit reticulocyte incorporation of iron from rabbit transferrin was independent of transferrin iron saturation but uptake from human transferrin was saturation dependent. Unlike human transferrin, rabbit transferrin does not surrender its iron from any unique preferred iron-binding site and can be described as functionally homogeneic. The two proteins also differ in their acid-base iron-binding properties. One human transferrin iron binding site retains an ability to bind iron at somewhat acid pH but this property is not shared by rabbit transferrin.  相似文献   

6.
1. Trypsin digestion of human serum transferrin partially saturated with iron(III)-nitrilotriacetate at pH 5.5 or pH 8.5 produces a carbohydrate-containing iron-binding fragment of mol.wt. 43000. 2. When iron(III) citrate, FeCl3, iron (III) ascorabate and (NH4)2SO4,FeSO4 are used as iron donors to saturate the protein partially, at pH8.5, proteolytic digestion yields a fragment of mol.wt. 36000 that lacks carbohydrate. 3. The two fragments differ in their antigenic structures, amino acid compositions and peptide 'maps'. 4. The fragment with mol.wt. 36000 was assigned to the N-terminal region of the protein and the other to the C-terminal region. 5. The distribution of iron in human serum transferrin partially saturated with various iron donors was examined by electrophoresis in urea/polyacrylamide gels and the two possible monoferric forms were unequivocally identified. 6. The site designated A on human serum transferrin [Harris (1977) Biochemistry 16, 560--564] was assigned to the C-terminal region of the protein and the B site to the N-terminal region. 7. The distribution of iron on transferrin in human plasma was determined.  相似文献   

7.
Despite the remarkable molecular similarity of human lactoferrin and human transferrin, the results of this investigation indicate that human lactoferrin was unable to furnish rabbit reticulocytes with iron for heme synthesis. Although conalbumin closely resembles transferrin in many of its properties, conalbumin iron-binding differs from human transferrin iron-binding. There are conflicting reports in the literature regarding conalbumin's ability to furnish iron to reticulocytes. In this study, small amounts of lactoferrin or conalbumin were adsorbed to mature and immature cell surfaces but neither of these iron-binding proteins surrendered iron intracellularly to reticulocytes for heme synthesis.  相似文献   

8.
Zak O  Aisen P 《Biochemistry》2003,42(42):12330-12334
Human transferrin, like other members of the transferrin class of iron-binding proteins, is a bilobal structure, the product of duplication and fusion of an ancestral gene during the course of biochemical evolution. Although the two lobes exhibit 45% sequence identity and identical ligand structures of their iron-binding sites (one in each lobe), they differ in their iron-binding properties and their responsiveness to complex formation with the transferrin receptor. A variety of interlobe interactions modulating these iron-binding functions has been described. We have now studied the kinetics of iron release to pyrophosphate from the isolated recombinant C-lobe and from that lobe in the intact protein, each free and bound to receptor. The striking finding is that the rates of iron release at the pH of the endosome to which transferrin is internalized by the iron-dependent cell are similar in the free proteins but 18 times faster from full-length monoferric transferrin selectively loaded with iron in the C-lobe than from isolated C-lobe when each is complexed to the receptor. The possibility that the faster release in the receptor complex of the full-length protein at endosomal pH contributes to the evolutionary advantage of the bilobal structure is considered.  相似文献   

9.
Rat plasma contains two isotransferrins rather than the single iron-binding protein found in plasma of other species, and it was recently proposd that differences between the biological behavior of each isotransferrin accounted for observations previously attributed to behavioral differences between each of the two transferrin iron-binding sites. The two isotransferrins were isolated from rat plasma by DEAE-Sephadex ion-exchange chromatography and isoelectric focusing. The pH-dependent iron-dissociating and reticulocyte iron-donating properties of each isotransferrin were investigated and found to be indistinguishable. Like human transferrin, one iron-binding site retains its affinity for iron below pH 6 and this property was used to investigate the invivo acquisition of catabolic iron in order to determine whether the process occurs at one specific or both binding sites. Plasma radioactive iron, derived from injected 59Fe-labelled heat denatured erythrocytes was bound with high specificity to the transferrin iron-binding site that was most resistant to acidic dissociation. This finding supports Fletcher and Huehns' hypothesis that each of the two rat transferrin iron-binding sites is endowed with a separate functional role.  相似文献   

10.
When radioiron-labelled transferrin with 55Fe located predominantly in the N-terminal iron-binding site and 59Fe predominantly in the C-terminal iron-binding site was incubated with rabbit reticulocytes, both radioisotopes of iron were removed at similar rates. Electrophoresis of transferrin samples taken during the course of an incubation, in polyacrylamide gels containing 6 M-urea, showed that iron was removed in a pairwise fashion, giving rise to iron-free transferrin.  相似文献   

11.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59Fe uptake experiments with chemically labeled preparations indicated that iron bound at near neutral pH was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2--5.8) was required to effect dissociation of iron that has remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-donating properties of human transferrin and identifies that the near neutral iron-binding site initially surrenders its iron to these cells.  相似文献   

12.
The role of the two iron-binding sites of rat transferrin in the exchange of iron with cells has been assessed using urea polyacrylamide gel electrophoresis to separate and quantitate the four possible molecular species of transferrin generated during the incubation of 125I-labelled transferrin with rat reticulocytes and hepatocytes. Addition of diferric transferrin to reticulocytes led directly to the appearance of apotransferrin together with small and comparable amounts of the two monoferric transferrins. After 2 h 44.8% of the iron had been removed by the cells, and of the iron-depleted transferrin 71.8% was apotransferrin, the remainder being monoferric transferrin, 16.1% with N-terminal iron and 12.1% with C-terminal iron. A similar pattern emerged with hepatocytes, but the rate of iron removal was slower and the proportion of apotransferrin generated was lower. After 4 h 10.9% of the iron had been removed from the transferrin and the distribution of the iron-depleted protein was: apotransferrin 26.9% and monoferric (N-terminal) 39.2%, (C-terminal) 33.9%. The appearance of apotransferrin during each incubation and the generation of both monoferric transferrins suggest that both cell types are able to remove iron from differic transferrin in pairwise fashion and that they do not appreciably distinguish between the two iron-binding sites of the protein. Release of iron from hepatocytes to apotransferrin lead to the appearance of both monferric species and then to increasing amounts of diferric transferrin. The process of iron release did not seem to distinguish between the vacant iron-binding sites of transferrin.  相似文献   

13.
1. A competitive dialysis technique has been used to study the relative affinities of the two iron-binding sites on transferrin molecules and the relative binding strengths of transferrins isolated from plasma of different species. 2. The comparisons were extended to include desialylated human transferrin, ovotransferrin, and a cyanogen bromide fragment of the latter. 3. Although the results of bilateral experiments could generally be accounted for in terms of the theory of independent sites, there were some exceptions, and cyclic comparisons were inconsistent. 4. All the comparisons made were compatible with a model in which site-interaction occurred, but it was not possible to decide whether the sites were intrinsically identical or not. For most species this corresponded to positive cooperativity, but for rabbit it was negative. 5. The average affinity of transferrin for iron depended on species, but the variation was never more than about one order of magnitude. 6. No effect on the binding constants for human transferrin could be detected when the sialic acid residues were removed. 7. The fragment of ovotransferrin competed fairly effectively with the native molecule for iron, although the average relative affinity was only about 1:15. 8. The relative binding of iron by ovotranferrin and human transferrin was affected little when bicarbonate anion was replaced by oxalate, although the ratio of the two binding constants for ovotranferrin increased.  相似文献   

14.
用胰蛋白酶水解铁饱和的猪血清转铁蛋白 ,可同时获得含单一铁结合部位的N端和C端半分子。比较了猪血清转铁蛋白及其N端和C端半分子与人胎盘细胞膜转铁蛋白受体的结合能力 ,其受体结合能力依次为 :猪血清转铁蛋白 >C端半分子 >N端半分子  相似文献   

15.
An iron binding protein, isolated from guinea pig intestinal mucosa, was compared to guinea pig transferrin. Both had a molecular weight of approximately 80,000. The intestinal iron-binding protein consisted of 2 subunits of equal molecular weight; transferrin had no subunits. Transferrin showed an absorbance peak at 470 nm; the intestinal iron-binding protein had no visible absorbance but did have a peak at 336 nm. Electron spin resonance spectra of the two proteins dfffered. Significant differences on amino acid analysis were also identified.  相似文献   

16.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59 uptake experiments with chemically labeled preparations indicated that iron bound at near neutral ph was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2–5.8) was required to effect dissociation of iron that had remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-binding properties of human transferrin and identifies that the near neutral iron-donating site initially surrenders its iron to these cells.  相似文献   

17.
Bordetella pertussis was able to grow in vitro under conditions where the only iron present was bound to the iron-binding proteins ovotransferrin, transferrin or lactoferrin. Under these conditions the bacteria produced neither hydroxamate nor phenolate-catecholate siderophores to assist in the procurement of iron. Examination of B. pertussis outer-membrane preparations by SDS-PAGE and immunoblotting showed that the iron-binding protein ovotransferrin was bound directly to the bacterial surface. Assays of the binding of radiolabelled transferrin by the bacteria showed that the association was a specific process and that there was turnover of the bound proteins. Competitive binding assays indicated that lactoferrin could be bound in the same way. It is suggested that B. pertussis obtains iron directly from host iron-binding proteins during infection.  相似文献   

18.
The release of iron and transferrin from the human melanoma cell   总被引:3,自引:0,他引:3  
The role of the transferrin homologue, melanotransferrin (p97), in iron metabolism has been studied using the human melanoma cell line, SK-MEL-28, which expresses this antigen in high concentrations. The release of iron and transferrin were studied after prelabelling cells with human transferrin doubly labelled with iron-59 and iodine-125. Approx. 45% of internalised iron was in ferritin with little redistribution during reincubation. Iron release was linear with time, while transferrin release was biphasic, suggesting that iron was leaving the cell independently of transferrin. Unlabelled diferric transferrin increased transferrin release, implying a degree of coupling between cell surface binding, internalisation and release of transferrin. Increasing the preincubation time increased the amount of transferrin which remained internalised within the cell. A membrane-bound, iron-binding component with properties consistent with melanotransferrin was observed. Desferrioxamine or pyridoxal isonicotinoyl hydrazone could not remove iron from this compartment, suggesting a high affinity for iron. The number of membrane iron-binding molecules per cell was estimated to be 387,000 +/- 7000 . The non-transferrin-bound membrane Fe did not decrease during reincubation periods up to 5 h, suggesting that the cell was not utilising it. Hence, melanotransferrin may not have a role in internalising iron in melanoma cells.  相似文献   

19.
We isolated transferrin cDNA from tobacco cutworm (Spodoptera litura) and refer to it as SlTf (Spodoptera litura transferrin). The 2,237-bp SlTf cDNA encoded 685 amino acids, with a predicted Mw of 76.3 kDa and an isoelectric point of pH 7.97. The amino acid sequence of the SlTf protein had 11?C81% similarity with those of other reported animal transferrins, showing the highest similarity with another Lepidopteran insect, the silkworm (Bombyx mori), and the lowest similarity with atlantic cod (Gadus morhua) serum transferrin. Phylogenetic tree analysis showed that SlTf was close to transferrins of B. mori and M. sexta. By urea-polyacrylamide gel electrophoresis, four different iron-bound forms (apo-, C-terminal monoferric, N-terminal monoferric and diferric) were found from both SlTf and human transferrin, suggesting the C-lobe iron-binding motif of SlTf possesses the iron-biding activity, although its amino acid sequence is not well conserved compare to that of vertebrate transferrins. Accordingly, we suggest that the amino acid residues of iron-binding sites in SlTf are different from those of human serum transferrin, however the iron-binding capacity is conserved in both the C-lobe and the N-lobe of SlTf.  相似文献   

20.
There are several options available for intravenous application of iron supplements, but they all have a similar structure:—an iron core surrounded by a carbohydrate coating. These nanoparticles require processing by the reticuloendothelial system to release iron, which is subsequently picked up by the iron-binding protein transferrin and distributed throughout the body, with most of the iron supplied to the bone marrow. This process risks exposing cells and tissues to free iron, which is potentially toxic due to its high redox activity. A new parenteral iron formation, ferric pyrophosphate citrate (FPC), has a novel structure that differs from conventional intravenous iron formulations, consisting of an iron atom complexed to one pyrophosphate and two citrate anions. In this study, we show that FPC can directly transfer iron to apo-transferrin. Kinetic analyses reveal that FPC donates iron to apo-transferrin with fast binding kinetics. In addition, the crystal structure of transferrin bound to FPC shows that FPC can donate iron to both iron-binding sites found within the transferrin structure. Examination of the iron-binding sites demonstrates that the iron atoms in both sites are fully encapsulated, forming bonds with amino acid side chains in the protein as well as pyrophosphate and carbonate anions. Taken together, these data demonstrate that, unlike intravenous iron formulations, FPC can directly and rapidly donate iron to transferrin in a manner that does not expose cells and tissues to the damaging effects of free, redox-active iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号