首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial tRNA 3’-end metabolism is critical for the formation of functional tRNAs. Deficient mitochondrial tRNA 3’-end metabolism is linked to an array of human diseases, including optic neuropathy, but their pathophysiology remains poorly understood. In this report, we investigated the molecular mechanism underlying the Leber’s hereditary optic neuropathy (LHON)-associated tRNAAla 5587A>G mutation, which changes a highly conserved adenosine at position 73 (A73) to guanine (G73) on the 3’-end of the tRNA acceptor stem. The m.5587A>G mutation was identified in three Han Chinese families with suggested maternal inheritance of LHON. We hypothesized that the m.5587A>G mutation altered tRNAAla 3’-end metabolism and mitochondrial function. In vitro processing experiments showed that the m.5587A>G mutation impaired the 3’-end processing of tRNAAla precursors by RNase Z and inhibited the addition of CCA by tRNA nucleotidyltransferase (TRNT1). Northern blot analysis revealed that the m.5587A>G mutation perturbed tRNAAla aminoacylation, as evidenced by decreased efficiency of aminoacylation and faster electrophoretic mobility of mutated tRNAAla in these cells. The impact of m.5587A>G mutation on tRNAAla function was further supported by increased melting temperature, conformational changes, and reduced levels of this tRNA. Failures in tRNAAla metabolism impaired mitochondrial translation, perturbed assembly and activity of oxidative phosphorylation complexes, diminished ATP production and membrane potential, and increased production of reactive oxygen species. These pleiotropic defects elevated apoptotic cell death and promoted mitophagy in cells carrying the m.5587A>G mutation, thereby contributing to visual impairment. Our findings may provide new insights into the pathophysiology of LHON arising from mitochondrial tRNA 3’-end metabolism deficiency.  相似文献   

2.
Mitochondrial tRNAs are indispensable for the intra-mitochondrial translation of genes related to respiratory subunits, and mutations in mitochondrial tRNA genes have been identified in various disease patients. However, the molecular mechanism underlying pathogenesis remains unclear due to the lack of animal models. Here, we established a mouse model, designated ‘mito-mice tRNALeu(UUR)2748’, that carries a pathogenic A2748G mutation in the tRNALeu(UUR) gene of mitochondrial DNA (mtDNA). The A2748G mutation is orthologous to the human A3302G mutation found in patients with mitochondrial diseases and diabetes. A2748G mtDNA was maternally inherited, equally distributed among tissues in individual mice, and its abundance did not change with age. At the molecular level, A2748G mutation is associated with aberrant processing of precursor mRNA containing tRNALeu(UUR) and mt-ND1, leading to a marked decrease in the steady-levels of ND1 protein and Complex I activity in tissues. Mito-mice tRNALeu(UUR)2748 with ≥50% A2748G mtDNA exhibited age-dependent metabolic defects including hyperglycemia, insulin insensitivity, and hepatic steatosis, resembling symptoms of patients carrying the A3302G mutation. This work demonstrates a valuable mouse model with an inheritable pathological A2748G mutation in mt-tRNALeu(UUR) that shows metabolic syndrome-like phenotypes at high heteroplasmy level. Furthermore, our findings provide molecular basis for understanding A3302G mutation-mediated mitochondrial disorders.  相似文献   

3.
Gu W  Li M  Zhao WM  Fang NX  Bu S  Frazer IH  Zhao KN 《Nucleic acids research》2004,32(15):4448-4461
Exogenous transfer RNAs (tRNAs) favor translation of bovine papillomavirus 1 wild-type (wt) L1 mRNA in in vitro translation systems (Zhou et al. 1999, J. Virol., 73, 4972–4982). We, therefore, investigated whether papillomavirus (PV) wt L1 protein expression could be enhanced in eukaryotic cells following exogenous tRNA supplementation. Both Chinese hamster ovary (CHO) and Cos1 cells, transfected with PV1 wt L1 genes, effectively transcribed the genes but did not translate them. However, L1 protein translation was demonstrated following co-transfection with the L1 gene and a gene expressing tRNASer(CGA). Cell lines, stably transfected with a bovine papillomavirus 1 (BPV1) wt L1 expression construct, produced L1 protein after the transfection of the tRNASer(CGA) gene, but not following the transfection with basal vectors, suggesting that tRNASer(CGA) gene enhanced wt L1 translation as a result of endogenous tRNA alterations and phosphorylation of translation initiation factors elF4E and elF2α in the tRNASer(CGA) transfected L1 cell lines. The tRNASer(CGA) gene expression significantly reduced translation of L1 proteins expressed from codon-modified (HB) PV L1 genes utilizing mammalian preferred codons, but had variable effects on translation of green fluorescent proteins (GFPs) expressed from six serine GFP variants. The changes of tRNA pools appear to match the codon composition of PV wt and HB L1 genes and serine GFP variants to regulate translation of their mRNAs. These findings demonstrate for the first time in eukaryotic cells that translation of the target genes can be differentially influenced by the provision of a single tRNA expression construct.  相似文献   

4.
In this report, we investigated the molecular mechanism underlying a deafness-associated m.5783C > T mutation that affects the canonical C50-G63 base-pairing of TΨC stem of tRNACys and immediately adjacent to 5′ end of light-strand origin of mitochondrial DNA (mtDNA) replication (OriL). Two dimensional agarose gel electrophoresis revealed marked decreases in the replication intermediates including ascending arm of Y-fork arcs spanning OriL in the mutant cybrids bearing m.5783C > T mutation. mtDNA replication alterations were further evidenced by decreased levels of PolγA, Twinkle and SSBP1, newly synthesized mtDNA and mtDNA contents in the mutant cybrids. The m.5783C > T mutation altered tRNACys structure and function, including decreased melting temperature, conformational changes, instability and deficient aminoacylation of mutated tRNACys. The m.5783C > T mutation impaired the 5′ end processing efficiency of tRNACys precursors and reduced the levels of tRNACys and downstream tRNATyr. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced effects in the polypeptides harboring higher numbers of cysteine and tyrosine codons. These alterations led to deficient oxidative phosphorylation including instability and reduced activities of the respiratory chain enzyme complexes I, III, IV and intact supercomplexes overall. Our findings highlight the impact of mitochondrial dysfunction on deafness arising from defects in mitochondrial DNA replication and tRNA metabolism.  相似文献   

5.
In this study we scrutinized the association between the A8344G/A3243G mutations and a 9-bp deletion polymorphism with gestational diabetes mellitus (GDM) in an Asian Indian population. The A3243G mutation in the mitochondrial tRNALeu(UUR) causes mitochondrial encephalopathy myopathy, lactic acidosis, and stroke-like episodes (MELAS), while the A8344G mutation in tRNALys causes myoclonus epilepsy with ragged red fibers (MERRF). We screened 140 pregnant women diagnosed with GDM and 140 non-GDM participants for these mutations by PCR-RFLP analysis. Both A3243G and A8344G were associated with GDM (A3243: OR-3.667, 95% CI = 1.001–13.43, = 0.03; A8344G: OR-11.00, 95% CI = 0.6026–200.8, = 0.04). Mitochondrial DNA mutations contribute to the development of GDM. Our results conclude that mitochondrial mutations are associated with the GDM women in our population. Thus it is important to screen other mitochondrial mutations in the GDM women.  相似文献   

6.
A divE mutant, which has a temperature-sensitive mutation in the tRNA1Ser gene, exhibits differential loss of the synthesis of certain proteins, such as β-galactosidase and succinate dehydrogenase, at nonpermissive temperatures. In Escherichia coli, the UCA codon is recognized only by tRNA1Ser. Several genes containing UCA codons are normally expressed after a temperature shift to 42°C in the divE mutant. Therefore, it is unlikely that the defect in protein synthesis at 42°C is simply caused by a defect in the decoding function of the mutant tRNA1Ser. In this study, we sought to determine the cause of the defect in lacZ gene expression in the divE mutant. It has also been shown that the defect in lacZ gene expression is accompanied by a decrease in the amount of lacZ mRNA. To examine whether inactivation of mRNA degradation pathways restores the defect in lacZ gene expression, we constructed divE mutants containing rne-1, rnb-500, and pnp-7 mutations in various combinations. We found that the defect was almost completely restored by introducing an rne-1 pnp-7 double mutation into the divE mutant. Northern hybridization analysis showed that the rne-1 mutation stabilized lacZ mRNA, whereas the pnp-7 mutation stabilized mutant tRNA1Ser, at 44°C. We present a mechanism that may explain these results.  相似文献   

7.
8.
In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington''s disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.  相似文献   

9.
10.
In this report, we investigated the molecular genetic mechanism underlying the deafness-associated mitochondrial tRNAHis 12201T>C mutation. The destabilization of a highly conserved base-pairing (5A-68U) by the m.12201T>C mutation alters structure and function of tRNAHis. Using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mtDNA-less (ρo) cells, we showed ∼70% decrease in the steady-state level of tRNAHis in mutant cybrids, compared with control cybrids. The mutation changed the conformation of tRNAHis, as suggested by slower electrophoretic mobility of mutated tRNA with respect to the wild-type molecule. However, ∼60% increase in aminoacylated level of tRNAHis was observed in mutant cells. The failure in tRNAHis metabolism was responsible for the variable reductions in seven mtDNA-encoded polypeptides in mutant cells, ranging from 37 to 81%, with the average of ∼46% reduction, as compared with those of control cells. The impaired mitochondrial translation caused defects in respiratory capacity in mutant cells. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increase in the production of reactive oxygen species in the mutant cells. The data provide the evidence for a mitochondrial tRNAHis mutation leading to deafness.  相似文献   

11.
12.
13.
Human TRIT1 is a tRNA isopentenyltransferase (IPTase) homologue of Escherichia coli MiaA, Saccharomyces cerevisiae Mod5, Schizosaccharomyces pombe Tit1, and Caenorhabditis elegans GRO-1 that adds isopentenyl groups to adenosine 37 (i6A37) of substrate tRNAs. Prior studies indicate that i6A37 increases translation fidelity and efficiency in codon-specific ways. TRIT1 is a tumor suppressor whose mutant alleles are associated with cancer progression. We report the systematic identification of i6A37-containing tRNAs in a higher eukaryote, performed using small interfering RNA knockdown and other methods to examine TRIT1 activity in HeLa cells. Although several potential substrates contained the IPTase recognition sequence A36A37A38 in the anticodon loop, only tRNASerAGA, tRNASerCGA, tRNASerUGA, and selenocysteine tRNA with UCA (tRNA[Ser]SecUCA) contained i6A37. This subset is a significantly more restricted than that for two distant yeasts (S. cerevisiae and S. pombe), the only other organisms comprehensively examined. Unlike the fully i6A37-modified tRNAs for Ser, tRNA[Ser]SecUCA is partially (∼40%) modified. Exogenous selenium and other treatments that decreased the i6A37 content of tRNA[Ser]SecUCA led to increased levels of the tRNA[Ser]SecUCA. Of the human mitochondrion (mt)-encoded tRNAs with A36A37A38, only mt tRNAs tRNASerUGA and tRNATrpUCA contained detectable i6A37. Moreover, while tRNASer levels were unaffected by TRIT1 knockdown, the tRNA[Ser]SecUCA level was increased and the mt tRNASerUGA level was decreased, suggesting that TRIT1 may control the levels of some tRNAs as well as their specific activity.  相似文献   

14.
15.
We report here the biochemical characterization of the deafness-associated mitochondrial tRNASer(UCN) T7511C mutation, in conjunction with homoplasmic ND1 T3308C and tRNAAla T5655C mutations using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from an African family into human mtDNA-less (ρ°) cells. Three cybrids derived from an affected matrilineal relative carrying the homoplasmic T7511C mutation, exhibited ~75% decrease in the tRNASer(UCN) level, compared with three control cybrids. This amount of reduction in the tRNASer(UCN) level is below a proposed threshold to support a normal rate of mitochondrial protein synthesis in lymphoblastoid cell lines. This defect is likely a primary contributor to ~52% reduction in the rate of mitochondrial protein synthesis and marked defects in respiration and growth properties in galactose-containing medium. Interestingly, the T5655C mutation produces ~50% reduction in the tRNAAla level in mutant cells. Strikingly, the T3308C mutation causes a significant decrease both in the amount of ND1 mRNA and co-transcribed tRNALeu(UUR) in mutant cells. Thus, mitochondrial dysfunctions caused by the T5655C and T3308C mutations may modulate the phenotypic manifestation of the T7511C mutation. These observations imply that a combination of the T7511C mutation with two mtDNA mutations accounts for the high penetrance of deafness in this family.  相似文献   

16.
Secondary and tertiary structures of tRNAs are remarkably preserved from bacteria to humans, the notable exception being the mitochondrial (m) tRNAs of metazoans, which often deviate substantially from the canonical cloverleaf (secondary) or ‘L’-shaped (tertiary) structure. Many metazoan mtRNAs lack either the TψC (T) or dihydrouridine (D) loops of the canonical cloverleaf, which are known to confer structural rigidity to the folded structure. Thus, the absence of canonical TψC–D interactions likely results in greater dispersion of anticodon-acceptor interstem angle than for canonical tRNAs. To test this hypothesis, we have assessed the dispersion of the anticodon-acceptor angle for bovine mtRNASer(AGY), which lacks the canonical D arm and is thus incapable of forming stabilizing interarm interactions. Using the method of transient electric birefringence (TEB), and by changing the helical torsion angle between a core mtRNA bend and a second bend of known angle/rigidity, we have demonstrated that the core of mtRNASer(AGY) has substantially greater flexibility than its well-characterized canonical counterpart, yeast cytoplasmic tRNAPhe. These results suggest that increased flexibility, in addition to a more open interstem angle, would allow both noncanonical and canonical mtRNAs to utilize the same protein synthetic apparatus.  相似文献   

17.
18.
The genes encoding pea and potato mitochondrial tRNAGly and pea mitochondrial tRNASer(GCU) were analyzed with particular respect to their expression. Secondary-structure models deduced from the identical potato and pea tRNAGly gene sequences revealed A7:C66 mismatches in the seventh base pair at the base of the acceptor stems of both tRNAs. Sequence analyses of tRNAGly cDNA clones showed that these mispairings are not corrected by C66 to U66 conversions, as observed in plant mitochondrial tRNAPhe. Likewise, a U6:C67 mismatch identified in the acceptor stem of the pea tRNASer(GCU) is not altered by RNA editing to a mismatched U:U pair, which is created by RNA editing in Oenothera mitochondrial tRNACys. In vitro processing reactions with the respective tRNAGly and tRNASer(GCU) precursors show that such conversions are not necessary for 5′ and 3′ end maturation of these tRNAs. These results demonstrate that not all C:A (A:C) or U:C (C:U) mismatches in double-stranded regions of tRNAs are altered by RNA editing. An RNA editing event in plant mitochondrial tRNAs is thus not generally indicated by the presence of a mismatch but may depend on additional parameters.  相似文献   

19.
Mitochondrial DNA mutations are one of the molecular genetic bases of hypertension. Here, we performed clinical, genetic and mutational evaluation, molecular characterization as well as biochemical analysis of a Chinese Han family with maternally inherited hypertension. The m.15909A > G variant in tRNAThr was identified. This mutation abolished a highly conserved base pairing (11U-24A) in the D-stem of tRNAThr and affected the structure and function of mitochondrial tRNAThr. As a result, the overall levels of mitochondrial translation products was decreased. The reduced mitochondrial protein synthesis resulted in the decrease in the activity of complex, and in turn, the production of ATP decreased and the generation of ROS increased. The m.15909A > G mutation maybe an inherited factor leading to the development of hypertension in this Chinese Han pedigree.  相似文献   

20.
Leucyl-tRNA synthetase (LeuRS) is a multidomain enzyme that catalyzes Leu-tRNALeu formation and is classified into bacterial and archaeal/eukaryotic types with significant diversity in the C-terminal domain (CTD). CTDs of both bacterial and archaeal LeuRSs have been reported to recognize tRNALeu through different modes of interaction. In the human pathogen Candida albicans, the cytoplasmic LeuRS (CaLeuRS) is distinguished by its capacity to recognize a uniquely evolved chimeric tRNASer (CatRNASer(CAG)) in addition to its cognate CatRNALeu, leading to CUG codon reassignment. Our previous study showed that eukaryotic but not archaeal LeuRSs recognize this peculiar tRNASer, suggesting the significance of their highly divergent CTDs in tRNASer recognition. The results of this study provided the first evidence of the indispensable function of the CTD of eukaryotic LeuRS in recognizing non-cognate CatRNASer and cognate CatRNALeu. Three lysine residues were identified as involved in mediating enzyme-tRNA interaction in the leucylation process: mutation of all three sites totally ablated the leucylation activity. The importance of the three lysine residues was further verified by gel mobility shift assays and complementation of a yeast leuS gene knock-out strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号