首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aim

There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a) to establish a pocket model enabling mechanical removal of biofilm and b) to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL) fibroblasts.

Material and Methods

Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a) hand-instrumentation with curettes (CUR), b) ultrasonication (US), c) subgingival air-polishing using erythritol (EAP) and d) subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX). The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz), the caused tooth substance-loss (thickness) as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD.

Results

After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10). The lowest reduction was found after CUR (2 log10). Additionally, substance-loss was the highest when using CUR (128±40 µm) in comparison with US (14±12 µm), EAP (6±7 µm) and EAP-CHX (11±10) µm). Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts.

Conclusion

The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and results in a smooth surface with nearly no residual biofilm that promotes the reattachment of PDL fibroblasts.  相似文献   

2.
3.
It is generally accepted that the periodontal ligament (PDL) plays a crucial role in transferring occlusal forces from the teeth to the alveolar bone. Studies using finite element analysis (FEA) have helped to better understand this role and show that the stresses and strains in the alveolar bone are influenced by whether and how PDL is included in FE models. However, when the overall distribution of stresses and strains in crania and mandibles are of interest, PDL is often not included in FE models, although little is known about how this affects the results. Here we study the effect of representing PDL as a layer of solid material with isotropic homogeneous properties in an FE model of a human mandible using a novel application of geometric morphometrics. The results show that the modelling of the PDL affects the deformation and thus strain magnitudes not only of the alveolar bone around the biting tooth, but that the whole mandible deforms differently under load. As a result, the strain in the mandibular corpus is significantly increased when PDL is included, while the strain in the bone beneath the biting tooth is reduced. These results indicate the importance of the PDL in FE studies. Thus we recommend that the PDL should be included in FE models of the masticatory apparatus, with tests to assess the sensitivity of the results to changes in the Young's modulus of the PDL material.  相似文献   

4.
The periodontal ligament (PDL) is an essential fibrous tissue for tooth retention in the alveolar bone socket. PDL tissue further functions to cushion occlusal force, maintain alveolar bone height, allow orthodontic tooth movement, and connect tooth roots with bone. Severe periodontitis, deep caries, and trauma cause irreversible damage to this tissue, eventually leading to tooth loss through the destruction of tooth retention. Many patients suffer from these diseases worldwide, and its prevalence increases with age. To address this issue, regenerative medicine for damaged PDL tissue as well as the surrounding tissues has been extensively investigated regarding the potential and effectiveness of stem cells, scaffolds, and cytokines as well as their combined applications. In particular, PDL stem cells (PDLSCs) have been well studied. In this review, I discuss comprehensive studies on PDLSCs performed in vivo and contemporary reports focusing on the acquisition of large numbers of PDLSCs for therapeutic applications because of the very small number of PDLSCs available in vivo.  相似文献   

5.
Heat shock proteins (HSPs) are molecular chaperones that maintain intracellular protein homeostasis and ensure survival of cells. Continuous orthodontic force on the tooth is considered to be a type of physical stress loaded to the periodontal ligament (PDL). However, little is known about the role of HSPs during tooth movement. This study was performed to examine the expression of HSPs in the PDL during tooth movement using laser microdissection, microarray analysis, real-time RT-PCR and immunohistochemistry. Gene expression of HSPA1A in the pressure zone of the PDL was higher during 6 h of tooth movement than in the control group. Expression of HSPA1A decreased with time. HSPA1A was also detected in the pressure zone of the PDL at the protein level 24 h after the initial tissue change. These results strongly suggest that expression of HSPA1A in the PDL during early stages of tooth movement is a critical factor for tissue reaction.  相似文献   

6.
Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading, and is supposed to be mediated by several host mediators, such as chemokines. In this study we investigated the pattern of mRNAs expression encoding for osteoblast and osteoclast related chemokines, and further correlated them with the profile of bone remodeling markers in palatal and buccal sides of tooth under orthodontic force, where tensile (T) and compressive (C) forces, respectively, predominate. Real-time PCR was performed with periodontal ligament mRNA from samples of T and C sides of human teeth submitted to rapid maxillary expansion, while periodontal ligament of normal teeth were used as controls. Results showed that both T and C sides exhibited significant higher expression of all targets when compared to controls. Comparing C and T sides, C side exhibited higher expression of MCP-1/CCL2, MIP-1α/CCL3 and RANKL, while T side presented higher expression of OCN. The expression of RANTES/CCL5 and SDF-1/CXCL12 was similar in C and T sides. Our data demonstrate a differential expression of chemokines in compressed and stretched PDL during orthodontic tooth movement, suggesting that chemokines pattern may contribute to the differential bone remodeling in response to orthodontic force through the establishment of distinct microenvironments in compression and tension sides.  相似文献   

7.
The hypsodont equine cheek tooth erupts continuously throughout life. The collagen fibers of the periodontal ligament (PDL) have to remodel constantly to allow the tooth to move in an occlusal direction. Remodeling of the collagen fiber bundles needs to be well-coordinated in order to maintain functional tooth support. The aim of this study was to examine the role of matrix metalloproteinase-1 (MMP-1) in the collagen remodeling of the equine PDL under physiological conditions. Specimens containing the PDL interposed between the dental cementum and the alveolar bone were taken from nine Warmblood horses at three designated horizontal levels: subgingival, middle, and apical. The expression of MMP-1 was detected immunohistochemically. MMP-1 was found to be present in the specimens of all horses. Immunopositive fibroblasts/fibrocytes were accumulated within individual single collagen fascicles. Our results suggest that MMP-1 induced collagen degradation plays a central role in the physiological remodeling of the equine PDL. The distribution of MMP-1 positive fascicles indicates well-directed remodeling which occurs as an asynchronous process, so that only single collagen fascicles are remodeled at the same time. Due to this remodeling of one fascicle at a time, the overall anchorage of the tooth is preserved at all times.  相似文献   

8.
Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain.  相似文献   

9.
Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that the periodontal ligament (PDL) plays a key role. However, the mechanical function of the PDL in orthodontic tooth movement is not well understood as most mechanical models of the PDL to date have ignored the fibrous structure of the PDL. In this study we use finite element (FE) analysis to investigate the strains in the alveolar bone due to occlusal and orthodontic loads when PDL is modelled as a fibrous structure as compared to modelling PDL as a layer of solid material. The results show that the tension-only nature of the fibres essentially suspends the tooth in the tooth socket and their inclusion in FE models makes a significant difference to both the magnitude and distribution of strains produced in the surrounding bone. The results indicate that the PDL fibres have a very important role in load transfer between the teeth and alveolar bone and should be considered in FE studies investigating the biomechanics of orthodontic tooth movement.  相似文献   

10.
The periodontal ligament (PDL), a soft tissue connecting the tooth and the bone, is essential for tooth movement, bone remodeling and force dissipation. A collagenous network that connects the tooth root surface to the alveolar jaw bone is one of the major components of the PDL. The organization of the collagenous component and how it changes under load is still poorly understood. Here using a state-of-the-art custom-made loading apparatus and a humidified environment inside a microCT, we visualize the PDL collagenous network of a fresh rat molar in 3D at 1 μm voxel size without any fixation or contrasting agents. We demonstrate that the PDL collagen network is organized in sheets. The spaces between sheets vary thus creating dense and sparse networks. Upon vertical loading, the sheets in both networks are stretched into well aligned arrays. The sparse network is located mainly in areas which undergo compressive loading as the tooth moves towards the bone, whereas the dense network functions mostly in tension as the tooth moves further from the bone. This new visualization method can be used to study other non-mineralized or partially mineralized tissues, and in particular those that are subjected to mechanical loads. The method will also be valuable for characterizing diseased tissues, as well as better understanding the phenotypic expressions of genetic mutants.  相似文献   

11.
Periodontium is a complex organ composed of mineralized epithelial and connective tissue. Dexamethasone could stimulate proliferation of osteoblast and fibroblasts. This study aimed to assess the osteogenic effect of dexamethasone on periodental ligament (PDL) stem cells. PDL stem cells were collected from periodontal ligament tissue of root of extracted premolar of young and healthy people. The stem cells were cultured in α-MEM Medium in three groups, one group with basic medium contains (α- MEM and FBS 10 % and 50 mmol of β_ gelisrophosphat and L_ ascorbic acid µg/ml), the second group: basic medium with dexamethasone and the third one: basic medium without any osteogenic stimulant. Mineralization of cellular layer was analyzed with Alizarin red stain method. Osteogenic analysis was done by Alkaline phosphates and calcium test. These analysis indicated that the amount of intra-cellular calcium and alkaline phosphates in the Dexamethasone group was far more than the control and basic group (P<0.05). The results of Alizarin red stain indicated more mineralization of cultured cells in Dexamethasone group (P<0.05). The study results showed that Dexamethasone has significant osteogenic effect on PDL stem cells and further studies are recommended to evaluate its effect on treatment of bone disorders.  相似文献   

12.
Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet.Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (<1.5 and >1.5° difference between forefeet respectively) and individual feet as flat (<50°), medium (between 50° and 55°) or upright (>55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05).In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot.  相似文献   

13.

Background  

Mechano-transduction in periodontal ligament (PDL) cells is crucial for physiological and orthodontic tooth movement-associated periodontal remodelling. On the mechanistic level, molecules involved in this mechano-transduction process in PDL cells are not yet completely elucidated.  相似文献   

14.

Introduction

Pulmonary vein reconnection after pulmonary vein isolation (PVI) is a significant problem in the treatment of paroxysmal atrial fibrillation (AF). We report about patients who underwent contact force (CF) guided PVI using CF catheter and compared them to patients with PVI using an ablation catheter with enhanced tip irrigation.

Methods

A total of 59 patients were included in the analysis. In 30 patients circumferential PVI was performed using the Thermocool Smarttouch® ablation catheter (ST) whereas in 29 patients circumferential PVI using the Thermocool Surround Flow SF® ablation catheter (SF) was performed. Patients were compared in regard to procedure time, fluoroscopy time/dose as well as RF-application duration and completeness of PVI. Adverse events (pericardial effusion, PV stenosis, stroke, death) were evaluated. The presence of sinus rhythm off antiarrhythmic medication was assessed during 6 months follow-up using multiple 7 day Holter-ECGs.

Results

In both groups, all PVs were isolated without serious adverse events. Procedure time was 2.15 ± 0.5 h (ST) vs. 2.37 ± 1.13 h (SF) (p = 0.19). Duration of RF-applications was 46.6 ± 18 min (ST) and 49.8 ± 19 min (SF) (p = 0.52). Fluoroscopy time was 25.2 ± 13 min (ST) vs. 29 ± 18 min (SF), fluoroscopy dose 2675.6 ± 1658 versus 3038.3 ± 1997 cGym2 (p = 0.36 and 0.46 respectively). Sinus rhythm off antiarrhythmic medication validated with 7 day Holter ECGs was present in both groups in 72% of patients after 6 months of follow up.

Conclusion

PVI using the new contact force catheter is safe and effective in patients with paroxysmal AF.  相似文献   

15.
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface.  相似文献   

16.
The study aims to assess the concentration of vascular endothelial growth factors (VEGF) with platelet rich fibrin (PRF) biomaterial, while using it separately or in combination with nanohydroxyapatite (nano-HA) for treating intra-bony defects (IBDs) using radiographic evaluation (DBS-Win software). Sixty patients with IBD (one site/patient) and chronic periodontitis were recruited randomly to test either autologous PRF platelet concentrate, nano-HA bone graft, a combination of PRF platelet concentrate and nano-HA, or alone conventional open flap debridement (OFD). Recordings of clinical parameters including probing depth (PD), gingival index (GI), and clinical attachment level (CAL) were obtained at baseline and 6 months, post-operatively. One-way analysis of variance (ANOVA) was used to compare four groups; whereas, multiple comparisons were done through Tukey’s post hoc test. The results showed that CAL at baseline changed from 6.67 ± 1.23 to 4.5 ± 1.42 in group I, 6.6 ± 2.51 to 4.9 ± 1.48 in group II, 5.2 ± 2.17 to 3.1 ± 1.27 in group III, and 4.7 ± 2.22 to 3.7 ± 2.35 in group IV after 6 months. The most significant increase in bone density and fill was observed for IBD depth in group III that was recorded as 62.82 ± 24.6 and 2.31 ± 0.75 mm, respectively. VEGF concentrations were significantly increased at 3, 7, and 14 days in all groups. The use of PRF with nano-HA was successful regenerative periodontal therapy to manage periodontal IBDs, unlike using PRF alone. Increase in VEGF concentrations in all group confirmed its role in angiogenesis and osteogenesis in the early stages of bone defect healing.  相似文献   

17.
Alveolar bone supports teeth during chewing through a ligamentous interface with tooth roots. Although tooth loads are presumed to direct the development and adaptation of these tissues, strain distribution in the alveolar bone at different stages of tooth eruption and periodontal development is unknown. This study investigates the biomechanical effects of tooth loading on developing alveolar bone as a tooth erupts into occlusion. Mandibular segments from miniature pigs, Sus scrofa, containing M1 either erupting or in functional occlusion, were loaded in compression. Simultaneous recordings were made from rosette strain gages affixed to the lingual alveolar bone and the M2 crypt. Overall, specimens with erupting M1s were more deformable than specimens with occluding M1s (mean stiffness of 246 vs. 944 MPa, respectively, p=0.004). The major difference in alveolar strain between the two stages was in orientation. The vertically applied compressive loads were more directly reflected in the alveolar bone strains of erupting M1s, than those of occluding M1s, presumably because of the mediation of a more mature periodontal ligament (PDL) in the latter. The PDL interface between occluding teeth and alveolar bone is likely to stiffen the system, allowing transmission of occlusal loads. Alveolar strains may provide a stimulus for bone growth in the alveolar process and crest.  相似文献   

18.
One strategy evolved by teeth to avoid irreversible damage is to move and deform under the loads incurred during mastication. A key component in this regard is the periodontal ligament (PDL). The role of the bone underlying the PDL is less well defined. We study the interplay between the PDL and the underlying alveolar bone when loaded in the minipig. Using an Instron loading device we confirmed that the force-displacement curves of the molars and premolars of relatively fresh minipig intact mandibles are similar to those obtained for humans and other animals. We then used this information to obtain 3D images of the teeth before and after loading the tooth in a microCT such that the load applied is in the third linear part of the force displacement curve. We observed that at many locations there is a complimentary topography of the cementum and alveolar bone surface, strongly suggesting an active interplay between the tooth and the bone during mastication. We also observed that the loaded tooth does not come into direct contact with the underlying bone surface. A highly compressed layer of PDL is present between the tooth and the bone. The structure of the bone in the upper furcation region has a unique appearance with little obvious microstructure, abundant pores that have a large size range and at many locations the bone at the PDL interface has a needle-like shape. We conclude that there is a close interaction between the tooth, the PDL and the underlying alveolar bone during mastication. The highly compressed PDL layer that separates the tooth from the bone may fulfill a key shock absorbing function.  相似文献   

19.
The purpose of this study was to establish a long-term tooth cryopreservation method that can be used for tooth autotransplantation. Human periodontal ligament (PDL) cells were frozen in 10% dimethyl sulfoxide (Me2SO) using a programmed freezer with a magnetic field. Cells were cryopreserved for 7 days at −150 °C. Immediately after thawing, the number of surviving cells was counted and the cells were cultured; cultured cells were examined after 48 h. Results indicated that a 0.01 mT of a magnetic field, a 15-min hold-time, and a plunging temperature of −30 °C led to the greatest survival rate of PDL cells. Based on these findings, whole teeth were cryopreserved under the same conditions for 1 year. The organ culture revealed that the PDL cells of cryopreserved tooth with a magnetic field could proliferate as much as a fresh tooth, although the cells did not appear in the cryopreserved tooth without a magnetic field. Histological examination and the transmission electron microscopic image of cryopreserved tooth with a magnetic field did not show any destruction of cryopreserved cells. In contrast, severe cell damage was seen in cells frozen without a magnetic field. These results indicated that a magnetic field programmed freezer is available for tooth cryopreservation.  相似文献   

20.
Muscle force is potentiated by countermovement; this phenomenon is called stretch-shortening cycle (SSC) effect. In this study, we examined the factors strongly related to SSC effect in vivo, focusing on tendon elongation, preactivation, and residual force enhancement. Twelve healthy men participated in this study. Ankle joint angle was passively moved by a dynamometer, with a range of motion from 15° dorsiflexion (DF) to 15° plantarflexion (PF). Muscle contraction was evoked by electrical stimulation, with stimulation timing adjusted to elicit three types of contraction: (1) concentric contraction without preliminary contraction (CON), (2) concentric contraction after preliminary eccentric contraction (ECC), and (3) concentric contraction after preliminary isometric contraction (ISO). Joint torque was recorded at DF5°, PF0°, and PF5°, respectively. SSC effect was calculated as the ratio of joint torque obtained in ECC or ISO with respect to that obtained in CON at the aforementioned three joint angles. SSC effect was prominent in the first half of movement in both ECC (DF5°, 329.3 ± 101.2%; PF0°, 159.2 ± 29.4%; PF5°, 125.5 ± 20.8%) and ISO (DF5°, 276.4 ± 87.0%; PF0°, 134.5 ± 24.5%; PF5°, 106.8 ± 18.0%) conditions. SSC effect was significantly larger in ECC than in ISO at all joint angles (P < 0.001). Even without preliminary eccentric contraction (i.e., ISO condition), SSC effect was clearly large, indicating that a significant part of SSC effect is derived from preactivation. However, the active lengthening-induced force potentiation mechanism (residual force enhancement) also contributes to SSC effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号