首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ObjectivesAmong gynaecologic malignancies, ovarian cancer (OC) represents the leading cause of death for women worldwide. Current OC treatment involves cytoreductive surgery followed by platinum‐based chemotherapy, which is associated with severe side effects and development of drug resistance. Therefore, new therapeutic strategies are urgently needed. Herein, we evaluated the anti‐tumour effects of Vitamin E‐derived δ‐tocotrienol (δ‐TT) in two human OC cell lines, IGROV‐1 and SKOV‐3 cells.Materials and MethodsMTT and Trypan blue exclusion assays were used to assess δ‐TT cytotoxicity, alone or in combination with other molecules. δ‐TT effects on cell cycle, apoptosis, ROS generation and MAPK phosphorylation were investigated by flow cytometry, Western blot and immunofluorescence analyses. The synergism between δ‐TT and chemotherapy was evaluated by isobologram analysis.ResultsWe demonstrated that δ‐TT could induce cell cycle block at G1‐S phase and mitochondrial apoptosis in OC cell lines. In particular, we found that the proapoptotic activity of δ‐TT correlated with mitochondrial ROS production and subsequent JNK and p38 activation. Finally, we observed that the compound was able to synergize with cisplatin, not only enhancing its cytotoxicity in IGROV‐1 and SKOV‐3 cells but also re‐sensitizing IGROV‐1/Pt1 cell line to its anti‐tumour effects.Conclusionsδ‐TT triggers G1 phase cell cycle arrest and ROS/MAPK‐mediated apoptosis in OC cells and sensitizes them to platinum treatment, thus representing an interesting option for novel chemopreventive/therapeutic strategies for OC.  相似文献   

3.
Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid‐sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT‐PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug‐resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells’ proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and β‐catenin, vimentin and fibronectin expression via the AKT/GSK‐3β/Snail pathway driven by TGFβ/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK‐3β/Snail pathway.  相似文献   

4.

Objectives

Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a mechanistically unique inhibitor of microtubule dynamics. In this study, we investigated whether selective signal pathways were associated with eribulin activity compared to paclitaxel, which stabilizes microtubules, based on gene expression profiling of cell line panels of breast, endometrial, and ovarian cancer in vitro.

Results

We determined the sets of genes that were differentially altered between eribulin and paclitaxel treatment in breast, endometrial, and ovarian cancer cell line panels. Our unsupervised clustering analyses revealed that expression profiles of gene sets altered with treatments were correlated with the in vitro antiproliferative activities of the drugs. Several tubulin isotypes had significantly lower expression in cell lines treated with eribulin compared to paclitaxel. Pathway enrichment analyses of gene sets revealed that the common pathways altered between treatments in the 3 cancer panels were related to cytoskeleton remodeling and cell cycle regulation. The epithelial-mesenchymal transition (EMT) pathway was enriched in genes with significantly altered expression between the two drugs for breast and endometrial cancers, but not for ovarian cancer. Expression of genes from the EMT pathway correlated with eribulin sensitivity in breast cancer and with paclitaxel sensitivity in endometrial cancer. Alteration of expression profiles of EMT genes between sensitive and resistant cell lines allowed us to predict drug sensitivity for breast and endometrial cancers.

Conclusion

Gene expression analysis showed that gene sets that were altered between eribulin and paclitaxel correlated with drug in vitro antiproliferative activities in breast and endometrial cancer cell line panels. Among the panels, breast cancer provided the strongest differentiation between eribulin and paclitaxel sensitivities based on gene expression. In addition, EMT genes were predictive of eribulin sensitivity in the breast and endometrial cancer panels.  相似文献   

5.
Breast cancer (BC) is the most prevalent cancer in women and the second leading cause for cancer‐related death in women. LncRNA CCAT2 is involved in BC cell drug sensitivity. Drug resistance of BC cells after chemotherapy is the main obstacle to therapeutic effects. This study explored whether BC cell drug sensitivity to 5‐Fu was related to lncRNA CCAT2‐regulated mTOR pathway. Normal breast tissues and BC tissues before/after neoadjuvant chemotherapy were collected, and CCAT2 expression was detected by RT‐qPCR. Correlation between CCATA2 expression and neoadjuvant chemotherapy efficacy was analysed using the Kendall''s tau‐b correlation analysis. Normal breast epithelial cells and BC cell lines were cultured. BC cell lines were treated with 5‐Fu, and CCAT2 mRNA level in cells was detected. The 5‐Fu‐resistant MCF‐7/5‐Fu and MDA‐MB‐231/5‐Fu cells were treated with CCAT2 overexpression/knockdown or CCI‐779 (the mTOR pathway inhibitor). The mTOR pathway levels were detected. Expression of apoptosis‐related factors was identified. A subcutaneous xenograft model was carried out. High CCAT2 expression was detected in BC tissues and BC drug‐resistant cells after neoadjuvant chemotherapy, and a negative link was revealed between CCAT2 expression and efficacy of neoadjuvant chemotherapy. p‐mTOR/mTOR in 5‐Fu‐resistant BC cells with inhibited CCAT2 was decreased, while CCAT2 overexpression activated the mTOR pathway. IC50 value, proliferation, cells in S phase increased and apoptosis reduced after CCAT2 overexpression. After si‐CCAT2 or CCI‐779 treatment, the growth rate of transplanted tumours was inhibited, while promoted after CCAT2 overexpression. CCAT2 may reduce BC cell chemosensitivity to 5‐Fu by activating the mTOR pathway.  相似文献   

6.
Aresenic trioxide (ATO) is proven to be active against leukaemia cells by inducing apoptosis and differentiation. Even though ATO could effectively induce remissions of leukaemia cells, the drug resistance was observed occasionally. To further dissect the mechanism of ATO resistance, we selected the ATO‐resistant SH‐SY5Y cells and found that Bcl‐2 controlled the sensitivity of ATO in SH‐SY5Y cells. We report that necroptosis, autophagy, NF‐ƘB and MAPK signalling pathway are not involved in ATO‐induced apoptosis. Moreover, the ATO‐resistant cells showed distinct mitochondrial morphology compared with that of ATO‐sensitive cells. Intriguingly, nude mice‐bearing ATO‐sensitive cells derived xenograft tumours are more sensitive to ATO treatment compared with that of ATO‐resistant cells. These data demonstrate that cancer cells can acquire the ATO‐resistance ability by increasing the Bcl‐2 expression.  相似文献   

7.
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial–mesenchymal transition (EMT) in this resistance. Epithelial‐like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial‐like and mesenchymal‐like cells, the module identification analysis was performed using weighted gene co‐expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein–protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co‐expression of miRNA‐lncRNA‐TF with the hub genes was reconstructed. The co‐expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non‐preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co‐expression pattern of the brown module''s hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.  相似文献   

8.
Advanced and metastatic estrogen receptor‐positive (ER+) breast cancers are often endocrine resistant. However, endocrine therapy remains the primary treatment for all advanced ER+ breast cancers. Treatment options that may benefit resistant cancers, such as add‐on drugs that target resistance pathways or switching to chemotherapy, are only available after progression on endocrine therapy. Here we developed an endocrine therapy prognostic model for early and advanced ER+ breast cancers. The endocrine resistance (ENDORSE) model is composed of two components, each based on the empirical cumulative distribution function of ranked expression of gene signatures. These signatures include a feature set associated with long‐term survival outcomes on endocrine therapy selected using lasso‐regularized Cox regression and a pathway‐based curated set of genes expressed in response to estrogen. We extensively validated ENDORSE in multiple ER+ clinical trial datasets and demonstrated superior and consistent performance of the model over clinical covariates, proliferation markers, and multiple published signatures. Finally, genomic and pathway analyses in patient data revealed possible mechanisms that may help develop rational stratification strategies for endocrine‐resistant ER+ breast cancer patients.  相似文献   

9.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

10.
This study investigated the mechanisms of migration inhibitory factor (MIF) and solute carrier family 3 member 2 (SLC3A2) in colorectal cancer progression. The levels of MIF and SLC3A2 expression in cells were measured by RT‐qPCR. SW480 and SW620 cells were transfected with sh‐MIF and sh‐SLC3A2, respectively. MIF, SLC3A2, GPX4, E‐cadherin and N‐cadherin expression were detected by immunofluorescence (IF). CCK8 and Transwell assays were performed to detect cell proliferation and migration. Co‐immunoprecipitation (CoIP) was used to measure the binding activity of MIF and SLC3A2. Finally, a nude mouse tumorigenicity assay was used to confirm the functions of MIF and SLC3A2 in colorectal cancer. Results showed that the levels of MIF and SLC3A2 expression were up‐regulated in colorectal cancer cells. Inhibition of MIF or SLC3A2 expression prevented cell proliferation, migration, epithelial‐mesenchymal transition (EMT) and invasion. In addition, knockdown of MIF and SLC3A2 promoted iron death in SW480 and SW620 cells. CoIP results showed that MIF and SLC3A2 directly interact with each other. Knockdown of both MIF and SLC3A2 inhibited tumour growth and metastasis via the AKT/GSK‐3β pathway in vivo. The Akt/GSK‐3β pathway was found to participate in regulating MIF and SLC3A2 both in vivo and in vitro. MIF and SLC3A2 might be potential biomarkers for monitoring the treatment of colorectal cancer.  相似文献   

11.
12.
13.
Apatinib, a highly selective inhibitor of vascular endothelial growth factor receptor‐2 (VEGFR‐2), inhibits the angiogenesis of tumours. The function and mechanism of apatinib in oesophageal squamous cell carcinoma (ESCC) remain unknown. In present study, we found that the development of ESCC in patients was controlled by treatment of combination of apatinib and a chemotherapeutic drug. Moreover, apatinib efficiently promotes cell apoptosis, inhibits cell proliferation, invasion, epithelial‐mesenchymal transition (EMT) and activity of the Akt/mTOR pathway in ESCC cells. Western blot analysis showed that apatinib significantly increased vimentin protein levels, decreased Bcl2, matrix metalloproteinase 9 (MMP9), E‐cadherin, p‐Akt and p‐mTOR protein levels in ESCC cells. Furthermore, apatinib enhanced chemosensitivity of cytotoxic drugs paclitaxel (TAX), 5‐fluorouracil (5‐FU) and cisplatin (DDP) by upregulating expression of vimentin protein, and downregulating expression of Bcl2, MMP9 and E‐cadherin protein in vitro. Compared with single‐agent groups, the combination of apatinib with each chemotherapeutic drug significantly repressed tumour growth and angiogenesis through blocking the expression of Ki67 and VEGFR‐2 in vivo. Taken together, apatinib efficiently inhibits cell growth through blocking Bcl2 and Akt/mTOR pathway, and suppresses metastasis via inhibiting MMP9 and EMT in ESCC cells. Apatinib promoted antitumour effect of chemotherapeutic agents through promoting cell apoptosis and inhibiting EMT and angiogenesis in ESCC.  相似文献   

14.
Baseline or acquired resistance to docetaxel (DOC) represents a significant risk for patients with metastatic prostate cancer (PC). In the last years, novel therapy regimens have been approved providing reasonable alternatives for DOC‐resistant patients making prediction of DOC resistance of great clinical importance. We aimed to identify serum biomarkers, which are able to select patients who will not benefit from DOC treatment. DOC‐resistant PC3‐DR and DU145‐DR sublines and their sensitive parental cell lines (DU145, PC3) were comparatively analyzed using liquid chromatography‐coupled tandem mass spectrometry (LC‐MS/MS). Results were filtered using bioinformatics approaches to identify promising serum biomarkers. Serum levels of five proteins were determined in serum samples of 66 DOC‐treated metastatic castration‐resistant PC patients (mCRPC) using ELISA. Results were correlated with clinicopathological and survival data. CD44 was subjected to further functional cell culture analyses. We found at least 177 two‐fold significantly overexpressed proteins in DOC‐resistant cell lines. Our bioinformatics method suggested 11/177 proteins to be secreted into the serum. We determined serum levels of five (CD44, MET, GSN, IL13RA2 and LNPEP) proteins in serum samples of DOC‐treated patients and found high CD44 serum levels to be independently associated with poor overall survival (= 0.001). In accordance, silencing of CD44 in DU145‐DR cells resulted in re‐sensitization to DOC. In conclusion, high serum CD44 levels may help identify DOC‐resistant patients and may thereby help optimize clinical decision‐making regarding type and timing of therapy for mCRPC patients. In addition, our in vitro results imply the possible functional involvement of CD44 in DOC resistance.  相似文献   

15.

Background

Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown.

Results

We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38 or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of ‘DNA methylation entropy’ to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples.

Conclusion

Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1552-y) contains supplementary material, which is available to authorized users.  相似文献   

16.
Despite significant efficacy of ibrutinib therapy in mantle cell lymphoma (MCL), about one‐third of MCL patients will display primary resistance. In time, secondary resistance occurs almost universally with an unlikely response to salvage chemotherapy afterwards. While intense efforts are being directed towards the characterization of resistance mechanisms, our focus is on identifying the signalling network rewiring that characterizes this ibrutinib resistant phenotype. Importantly, intrinsic genetic, epigenetic and tumour microenvironment‐initiated mechanisms have all been shown to influence the occurrence of the ibrutinib resistant phenotype. By using in vitro and in vivo models of primary and secondary ibrutinib resistance as well as post‐ibrutinib treatment clinical samples, we show that dual targeting of the BCL‐2 and PI3‐kinase signalling pathways results in synergistic anti‐tumour activity. Clinically relevant doses of venetoclax, a BCL‐2 inhibitor, in combination with duvelisib, a PI3Kδ/γ dual inhibitor, resulted in significant inhibition of these compensatory pathways and apoptosis induction. Our preclinical results suggest that the combination of venetoclax and duvelisib may be a therapeutic option for MCL patients who experienced ibrutinib failure and merits careful consideration for future clinical trial evaluation.  相似文献   

17.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although cisplatin‐based chemotherapy is commonly used in HNSCC, frequent development of cisplatin resistance is a potential cause of poor HNSCC prognosis. In the present study, we investigated the anticancer efficacy of a major paclitaxel metabolite namely 7‐Epitaxol in cisplatin‐resistant HNSCC. The findings revealed that 7‐Epitaxol exerts cytotoxic effects in cisplatin‐resistant HNSCC cell lines by inducing cell cycle arrest and intrinsic and extrinsic apoptotic pathways. Specifically, 7‐Epitaxol increased Fas, TNF‐R1, DR5, DcR3 and DcR2 expressions, reduced Bcl‐2 and Bcl‐XL (anti‐apoptotic proteins) expressions, and increased Bid and Bim L/S (pre‐apoptotic proteins) expressions, leading to activation of caspase‐mediated cancer cell apoptosis. At the upstream cell signalling level, 7‐Epitaxol reduced the phosphorylation of AKT, ERK1/2 and p38 to trigger apoptosis. In vivo results showed that animals treated with 7‐Epitaxol show antitumor growth compared to control animals. Taken together, the study demonstrates the potential anticancer efficacy of 7‐Epitaxol in inducing apoptosis of cisplatin‐resistant HNSCC cells through the suppression of AKT and MAPK signalling pathways.  相似文献   

18.
Technology based on artificial small RNAs, including artificial microRNAs (amiRNAs), exploits natural RNA silencing mechanisms to achieve silencing of endogenous genes or pathogens. This technology has been successfully employed to generate resistance against different eukaryotic viruses. However, information about viral RNA molecules effectively targeted by these small RNAs is rather conflicting, and factors contributing to the selection of virus mutants escaping the antiviral activity of virus‐specific small RNAs have not been studied in detail. In this work, we transformed Nicotiana benthamiana plants with amiRNA constructs designed against the potyvirus plum pox virus (PPV), a positive‐sense RNA virus, and obtained lines highly resistant to PPV infection and others showing partial resistance. These lines have allowed us to verify that amiRNA directed against genomic RNA is more efficient than amiRNA targeting its complementary strand. However, we also provide evidence that the negative‐sense RNA strand is cleaved by the amiRNA‐guided RNA silencing machinery. Our results show that the selection pressure posed by the amiRNA action on both viral RNA strands causes an evolutionary explosion that results in the emergence of a broad range of virus variants, which can further expand in the presence, and even in the absence, of antiviral challenges.  相似文献   

19.
CD44 has shown prognostic values and promising therapeutic potential in multiple human cancers; however, the effects of CD44 silencing on biological behaviors of cancer stem cells (CSCs) have not been fully understood in colorectal cancer. To examine the contribution of siRNA‐induced knockdown of CD44 to the biological features of colorectal CSCs, colorectal CSCs HCT116‐CSCs were generated, and CD44 was knocked down in HCT116‐CSCs using siRNA. The proliferation, migration and invasion of HCT116‐CSCs were measured, and apoptosis and cell‐cycle analyses were performed. The sensitivity of HCT116‐CSCs to oxaliplatin was tested, and xenograft tumor growth assay was performed to examine the role of CD44 in HCT116‐CSCs tumorigenesis in vivo. In addition, the expression of epithelial–mesenchymal transition (EMT) markers E‐cadherin, N‐cadherin and vimentin was quantified. siRNA‐induced knockdown of CD44 was found to inhibit the proliferation, migration and invasion, induce apoptosis, promote cell‐cycle arrest at the G1/G0 phase and increase the sensitivity of HCT116‐CSCs to oxaliplatin in HCT116‐CSCs, and knockdown of CD44 suppressed in vivo tumorigenesis and intrapulmonary metastasis of HCT116‐CSCs. Moreover, silencing CD44 resulted in EMT inhibition. Our findings demonstrate that siRNA‐induced CD44 knockdown suppresses the proliferation, invasion and in vivo tumorigenesis and metastasis of colorectal CSCs by inhibiting EMT.  相似文献   

20.
ObjectivesIdiopathic pulmonary fibrosis (IPF) is marked by the excessive accumulation of extracellular matrix, which participates in a variety of chronic diseases or injuries and seriously threatens human health. Due to the side effects of clinical drugs, there is still a need to develop novel and less toxic drugs to treat pulmonary fibrosis.Materials and MethodsSKLB‐YTH‐60 was developed through computer‐aided drug design, de novo synthesis and high‐throughput screening. We employed the bleomycin (BLM)‐induced lung fibrosis animal models and used TGF‐β1 to induce the epithelial‐mesenchymal transition (EMT) of A549 cells in vitro. Meanwhile, the protein expression of collagen I and the α‐smooth muscle actin (α‐SMA), E‐cadherin, p‐FGFR1, p‐PLCγ, p‐Smad2/3 and p‐Erk1/2 was detected by western blot.ResultsYTH‐60 has obvious anti‐proliferative activity on fibroblasts and A549 cells. Moreover, YTH‐60 could impair the EMT of A549 cells and suppressed fibrosis by inhibiting FGFR and TGF‐β/Smad‐dependent pathways. Intraperitoneal administration of preventive YTH‐60 could significantly reduce the degree of fibrosis in mice and regulate the imbalance of the immune microenvironment. In addition, we observed that therapeutic YTH‐60 treatment attenuated fibrotic changes in mice during the period of fibrosis. Importantly, YTH‐60 has shown an acceptable oral bioavailability (F = 17.86%) and appropriate eliminated half‐life time (T 1/2 = 8.03 hours).ConclusionsTaken together, these preclinical evaluations suggested that YTH‐60 could be a promising drug candidate for treating IPF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号