首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
RNA碱基上的化学修饰在其功能的精准调节中发挥关键作用,其中m6A是自然界中最普遍的RNA修饰之一,且该修饰在调控RNA稳定性、pre-mRNA剪接、翻译等方面具有重要功能。在真核生物中,m6A修饰主要由两种甲基转移酶完成,其在哺乳动物中分别命名为METTL3和METTL16。与METTL3相似,METTL16的底物多种多样,包括pre-mRNA、rRNA、snRNA和lncRNA等,因此似乎难以用一种分子机理解释METTL16对不同RNA底物进行m6A修饰的功能。此外,METTL16还在翻译调控中发挥重要作用,但此过程不依赖其甲基转移酶活性,这进一步增加了高度保守的METTL16的功能复杂性。本综述总结了METTL16及其同源蛋白质的结构域、甲基化底物以及它们的潜在功能,着重阐述了在不同物种中关于METTL16研究结果的矛盾之处,并推测METTL16调控S-腺苷基甲硫氨酸(SAM)代谢的功能是趋同进化的一个潜在案例。  相似文献   

5.
6.
7.
N6-Methyladenosine (m6A) is the most abundant internal modification in RNA and is specifically recognized by YT521-B homology (YTH) domain-containing proteins. Recently we reported that YTHDC1 prefers guanosine and disfavors adenosine at the position preceding the m6A nucleotide in RNA and preferentially binds to the GG(m6A)C sequence. Now we systematically characterized the binding affinities of the YTH domains of three other human proteins and yeast YTH domain protein Pho92 and determined the crystal structures of the YTH domains of human YTHDF1 and yeast Pho92 in complex with a 5-mer m6A RNA, respectively. Our binding and structural data revealed that the YTH domain used a conserved aromatic cage to recognize m6A. Nevertheless, none of these YTH domains, except YTHDC1, display sequence selectivity at the position preceding the m6A modification. Structural comparison of these different YTH domains revealed that among those, only YTHDC1 harbors a distinctly selective binding pocket for the nucleotide preceding the m6A nucleotide.  相似文献   

8.
N6 -methyl-adenosine (m6A) is one of the most common and abundant modifications on RNA molecules present in eukaryotes. However, the biological significance of m6A methylation remains largely unknown. Several independent lines of evidence suggest that the dynamic regulation of m6A may have a profound impact on gene expression regulation. The m6A modification is catalyzed by an unidentified methyltransferase complex containing at least one subunit methyltransferase like 3 (METTL3). m6A modification on messenger RNAs (mRNAs) mainly occurs in the exonic regions and 3’-untranslated region (3’-UTR) as revealed by high-throughput m6A-seq. One significant advance in m6A research is the recent discovery of the first two m6A RNA demethylases fat mass and obesity-associated (FTO) gene and ALKBH5, which catalyze m6A demethylation in an a-ketoglutarate (a-KG)-and Fe2+-dependent manner. Recent studies in model organisms demonstrate that METTL3, FTO and ALKBH5 play important roles in many biological processes, ranging from development and metabolism to fertility. Moreover, perturbation of activities of these enzymes leads to the disturbed expression of thousands of genes at the cellular level, implicating a regulatory role of m6A in RNA metabolism. Given the vital roles of DNA and histone methylations in epigenetic regulation of basic life processes in mammals, the dynamic and reversible chemical m6A modification on RNA may also serve as a novel epigenetic marker of profound biological significances.  相似文献   

9.
10.
11.
12.
13.
N6‐methyladenosine (m6A) is a highly dynamic RNA modification that has recently emerged as a key regulator of gene expression. While many m6A modifications are installed by the METTL3–METTL14 complex, others appear to be introduced independently, implying that additional human m6A methyltransferases remain to be identified. Using crosslinking and analysis of cDNA (CRAC), we reveal that the putative human m6A “writer” protein METTL16 binds to the U6 snRNA and other ncRNAs as well as numerous lncRNAs and pre‐mRNAs. We demonstrate that METTL16 is responsible for N6‐methylation of A43 of the U6 snRNA and identify the early U6 biogenesis factors La, LARP7 and the methylphosphate capping enzyme MEPCE as METTL16 interaction partners. Interestingly, A43 lies within an essential ACAGAGA box of U6 that base pairs with 5′ splice sites of pre‐mRNAs during splicing, suggesting that METTL16‐mediated modification of this site plays an important role in splicing regulation. The identification of METTL16 as an active m6A methyltransferase in human cells expands our understanding of the mechanisms by which the m6A landscape is installed on cellular RNAs.  相似文献   

14.
Uncontrolled epithelial cell proliferation in the prostate transition zone and the hyper-accumulation of mesenchymal-like cells derived from the epithelial-mesenchymal transition (EMT) of prostatic epithelium are two key processes in benign prostatic hyperplasia (BPH). m6A RNA modification affects multiple cellular processes, including cell proliferation, apoptosis, and differentiation. In this study, the aberrant up-regulation of methylase METTL3 in BPH samples suggests its potential role in BPH development. Elevated m6A modification in the prostate of the BPH rat was partially reduced by METTL3 knockdown. METTL3 knockdown also partially reduced the prostatic epithelial thickness and prostate weight, significantly improved the histological features of the prostate, inhibited epithelial proliferation and EMT, and promoted apoptosis. In vitro, METTL3 knockdown decreased TGF-β-stimulated BPH-1 cell proliferation, m6A modification, and EMT, whereas promoted cell apoptosis. METTL3 increased the m6A modification of PTEN and inhibited its expression through the reading protein YTHDF2. PTEN knockdown aggravated the molecular, cellular, and pathological alterations in the prostate of BPH rats and amplified TGF-β-induced changes in BPH-1 cells. More importantly, PTEN knockdown partially abolished the improving effects of METTL3 knockdown both in vivo and in vitro. In conclusion, the level of m6A modification is elevated in BPH; the METTL3/YTHDF2/PTEN axis disturbs the balance between epithelial proliferation and apoptosis, promotes EMT, and accelerates BPH development in an m6A modification-related manner.Subject terms: Cell biology, Molecular biology  相似文献   

15.
Hepatitis B virus (HBV)-associated acute-on-chronic liver failure (ACLF) is a clinical syndrome of severe liver damage. HBV infection is affected by N6-methyladenosine (m6A) RNA modification. Here, we investigated whether methyltransferase-like 3 (METTL3)-mediated m6A methylation can affect ACLF. Human hepatic cells (THLE-2) were treated with lipopolysaccharide (LPS) to induce cell damage. Proliferation, apoptosis and m6A modification were measured by MTT assay, flow cytometry and Dot blot assay. Our results showed that HBV infection significantly enhanced the levels of m6A modification and elevated the expression of METTL3 and mature-miR-146a-5p in THLE-2 cells, which was repressed by cycloleucine (m6A inhibitor). METTL3 overexpression enhanced m6A modification and promoted mature-miR-146a-5p expression. METTL3 overexpression promoted HBV replication and apoptosis, enhanced the levels of pro-inflammatory cytokines, hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg), and repressed cell proliferation in THLE-2 cells, which attributed to repress miR-146a-5p maturation. Moreover, a severe liver failure mouse model was established by HBV infection to verify the impact of METTL3 knockdown on liver damage in vivo. HBV-infection led to a severe liver damage and increase of apoptosis in hepatic tissues of mice, which was abolished by METTL3 knockdown. METTL3 knockdown reduced METTL3 expression and impeded miR-146a-5p maturation in HBV-infected mice. In conclusion, this work demonstrates that METTL3 inhibition ameliorates liver damage in mouse with HBV-associated ACLF, which contributes to repress miR-146a-5p maturation. Thus, this article suggests a novel therapeutic avenue to prevent and treat HBV-associated ACLF.  相似文献   

16.
《遗传学报》2022,49(9):847-858
N6-methyladenosine (m6A) modification, which is achieved by the METTL3/METTL14/WTAP methyltransferase complex, is the most abundant internal mRNA modification. Although recent evidence indicates that m6A can regulate neurodevelopment as well as synaptic function, the roles of m6A modification in the cerebellum and related synaptic connections are not well established. Here, we report that Purkinje cell (PC)-specific WTAP knockout mice display early-onset ataxia concomitant with cerebellar atrophy due to extensive PC degeneration and apoptotic cell death. Loss of Wtap also causes the aberrant degradation of multiple PC synapses. WTAP depletion leads to decreased expression levels of METTL3/14 and reduced m6A methylation in PCs. Moreover, the expression of GFAP and NF-L in the degenerating cerebellum is increased, suggesting severe neuronal injuries. In conclusion, this study demonstrates the critical role of WTAP-mediated m6A modification in cerebellar PCs, thus providing unique insights related to neurodegenerative disorders.  相似文献   

17.
18.
19.
20.
METTL8 has recently been identified as the methyltransferase catalyzing 3-methylcytidine biogenesis at position 32 (m3C32) of mitochondrial tRNAs. METTL8 also potentially participates in mRNA methylation and R-loop biogenesis. How METTL8 plays multiple roles in distinct cell compartments and catalyzes mitochondrial tRNA m3C formation remain unclear. Here, we discovered that alternative mRNA splicing generated several isoforms of METTL8. One isoform (METTL8-Iso1) was targeted to mitochondria via an N-terminal pre-sequence, while another one (METTL8-Iso4) mainly localized to the nucleolus. METTL8-Iso1-mediated m3C32 modification of human mitochondrial tRNAThr (hmtRNAThr) was not reliant on t6A modification at A37 (t6A37), while that of hmtRNASer(UCN) critically depended on i6A modification at A37 (i6A37). We clarified the hmtRNAThr substrate recognition mechanism, which was obviously different from that of hmtRNASer(UCN), in terms of requiring a G35 determinant. Moreover, SARS2 (mitochondrial seryl-tRNA synthetase) interacted with METTL8-Iso1 in an RNA-independent manner and modestly accelerated m3C modification activity. We further elucidated how nonsubstrate tRNAs in human mitochondria were efficiently discriminated by METTL8-Iso1. In summary, our results established the expression pattern of METTL8, clarified the molecular basis for m3C32 modification by METTL8-Iso1 and provided the rationale for the involvement of METTL8 in tRNA modification, mRNA methylation or R-loop biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号