首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astrocytes utilize two major pathways to achieve long distance intercellular communication. One pathway involves direct gap junction mediated signal transmission and the other consists of release of ATP through pannexin channels and excitation of purinergic receptors on nearby cells. Elevated extracellular potassium to levels occurring around hyperactive neurons affects both gap junction and pannexin1 channels. The action on Cx43 gap junctions is to increase intercellular coupling for a period that long outlasts the stimulus. This long term increase in coupling, termed “LINC”, is mediated through calcium and calmodulin dependent activation of calmodulin dependent kinase (CaMK). Pannexin1 can be activated by elevations in extracellular potassium through a mechanism that is quite different. In this case, potassium shifts activation potentials to more physiological range, thereby allowing channel opening at resting or slightly depolarized potentials. Enhanced activity of both these channel types by elevations in extracellular potassium of the magnitude occurring during periods of high neuronal activity likely has profound effects on intercellular signaling among astrocytes in the nervous system.  相似文献   

2.
Neuronal excitability relies on inward sodium and outward potassium fluxes during action potentials. To prevent neuronal hyperexcitability, potassium ions have to be taken up quickly. However, the dynamics of the activity-dependent potassium fluxes and the molecular pathways underlying extracellular potassium homeostasis remain elusive. To decipher the specific and acute contribution of astroglial Kir4.1 channels in controlling potassium homeostasis and the moment to moment neurotransmission, we built a tri-compartment model accounting for potassium dynamics between neurons, astrocytes and the extracellular space. We here demonstrate that astroglial Kir4.1 channels are sufficient to account for the slow membrane depolarization of hippocampal astrocytes and crucially contribute to extracellular potassium clearance during basal and high activity. By quantifying the dynamics of potassium levels in neuron-glia-extracellular space compartments, we show that astrocytes buffer within 6 to 9 seconds more than 80% of the potassium released by neurons in response to basal, repetitive and tetanic stimulations. Astroglial Kir4.1 channels directly lead to recovery of basal extracellular potassium levels and neuronal excitability, especially during repetitive stimulation, thereby preventing the generation of epileptiform activity. Remarkably, we also show that Kir4.1 channels strongly regulate neuronal excitability for slow 3 to 10 Hz rhythmic activity resulting from probabilistic firing activity induced by sub-firing stimulation coupled to Brownian noise. Altogether, these data suggest that astroglial Kir4.1 channels are crucially involved in extracellular potassium homeostasis regulating theta rhythmic activity.  相似文献   

3.
Purinergic signaling mediated by ATP and its metabolites contributes to various brain physiological processes as well as to several pathological conditions, including neurodegenerative and neurological disorders, such as epilepsy. Among the different ATP release pathways, pannexin 1 channels represent one of the major conduits being primarily activated in pathological contexts. Investigations on in vitro and in vivo models of epileptiform activity and seizures in mice and human tissues revealed pannexin 1 involvement in aberrant network activity and epilepsy, and highlighted that pannexin 1 exerts a complex role. Pannexin 1 can indeed either sustain seizures through release of ATP that can directly activate purinergic receptors, or tune down epileptic activity via ATP-derived adenosine that decreases neuronal excitability. Interestingly, in-depth analysis of the literature unveils that this dichotomy is only apparent, as it depends on the model of seizure induction and the type of evoked epileptiform activity, two factors that can differentially activate pannexin 1 channels and trigger distinct intracellular signaling cascades. Here, we review the general properties and ATP permeability of pannexin 1 channels, and discuss their impact on acute epileptiform activity and chronic epilepsy according to the regime of activity and disease state. These data pave the way for the development of new antiepileptic strategies selectively targeting pannexin 1 channels in a context-dependent manner.  相似文献   

4.
The activity of high-affinity glutamate transporters is essential for the normal function of the mammalian central nervous system. Using a combined pharmacological, confocal immunocytochemical, enzyme-based microsensor and fluorescence imaging approach, we examined glutamate uptake and transporter protein localization in single astrocytes of neuron-containing and neuron-free microislands prior to pre-synaptic transmitter secretion and during functional neuronal activity. Here, we report that the presence or absence of neurons strikingly affects the uptake capacity of the astroglial glutamate transporters GLT1 and GLAST1. Induction of transporter function is activated by neurons and this effect is mimicked by pre-incubation of astrocytes with micromolar concentrations of glutamate. Moreover, increased glutamate transporter activation is reproduced by endogenous release of glutamate via activation of neuronal nicotinic receptors. The increase in transport activity is dependent on neuronal release of glutamate, is associated with the local redistribution (clustering) of GLT1 and GLAST1 but is independent of transporter synthesis and of glutamate receptor activation. Together, these results suggest an activity-dependent neuronal feedback system for rapid astroglial glutamate transporter regulation where neuron-derived glutamate is the physiological signal that triggers transporter function.  相似文献   

5.
6.
Voltage-gated Kv2.1 potassium channels are important in the brain for determining activity-dependent excitability. Small ubiquitin-like modifier proteins (SUMOs) regulate function through reversible, enzyme-mediated conjugation to target lysine(s). Here, sumoylation of Kv2.1 in hippocampal neurons is shown to regulate firing by shifting the half-maximal activation voltage (V(1/2)) of channels up to 35 mV. Native SUMO and Kv2.1 are shown to interact within and outside channel clusters at the neuronal surface. Studies of single, heterologously expressed Kv2.1 channels show that only K470 is sumoylated. The channels have four subunits, but no more than two non-adjacent subunits carry SUMO concurrently. SUMO on one site shifts V(1/2) by 15 mV, whereas sumoylation of two sites produces a full response. Thus, the SUMO pathway regulates neuronal excitability via Kv2.1 in a direct and graded manner.  相似文献   

7.
Astrocytes form together with neurons tripartite synapses, where they integrate and modulate neuronal activity. Indeed, astrocytes sense neuronal inputs through activation of their ion channels and neurotransmitter receptors, and process information in part through activity-dependent release of gliotransmitters. Furthermore, astrocytes constitute the main uptake system for glutamate, contribute to potassium spatial buffering, as well as to GABA clearance. These cells therefore constantly monitor synaptic activity, and are thereby sensitive indicators for alterations in synaptically-released glutamate, GABA and extracellular potassium levels. Additionally, alterations in astroglial uptake activity or buffering capacity can have severe effects on neuronal functions, and might be overlooked when characterizing physiopathological situations or knockout mice. Dual recording of neuronal and astroglial activities is therefore an important method to study alterations in synaptic strength associated to concomitant changes in astroglial uptake and buffering capacities. Here we describe how to prepare hippocampal slices, how to identify stratum radiatum astrocytes, and how to record simultaneously neuronal and astroglial electrophysiological responses. Furthermore, we describe how to isolate pharmacologically the synaptically-evoked astroglial currents.  相似文献   

8.
Astrocytes are ideally situated to integrate glial and neuronal functions and neurovascular coupling by way of their multiple contacts with neurons, glia and blood vessels. There is a high degree of specialisation of astroglial membranes at the different sites of contact, including the expression of neurotransmitter receptors, ion channels, transporters and gap junctional proteins. An apparently universal property of astrocytes throughout the CNS is their responsiveness to ATP acting via metabotropic P2Y receptors, with a prominent role for the P2Y1 receptor subtype. Activation of astroglial P2Y receptors triggers a rise in intracellular calcium, which is the substrate for astroglial excitability and intercellular communication. In addition, astrocytes have a number of mechanisms for the release of ATP, which can be considered a 'gliotransmitter'. Astrocytes may be the most widespread source of ATP release in the CNS, and astroglial ATP and its metabolite adenosine activate purine receptors on neurons, microglia, oligodendrocytes and blood vessels. There is compelling evidence that astroglial ATP and adenosine regulate neuronal synaptic strength, although the physiological significance of this astrocyte-to-neuron signalling is questioned. A less appreciated aspect of astrocyte signalling is that they also release neurotransmitters onto other glia. Notably, both ATP and adenosine control microglial behaviour and regulate oligodendrocyte differentiation and myelination. P2 receptors also mediate injury responses in all glial cell types, with a prominent role for the P2X7 receptor subtype. In addition, ATP is a potent vasoconstrictor and astrocytes provide a route for coupling blood flow to neuronal activity by way of their synaptic and perivascular connections. Thus, astrocytes are the fulcrum of neuron-glial-vascular networks and purinergic signalling is the primary mechanism by which astrocytes can integrate the functions of these diverse elements.  相似文献   

9.
KV2.1 is the prominent somatodendritic sustained or delayed rectifier voltage-gated potassium (Kv) channel in mammalian central neurons, and is a target for activity-dependent modulation via calcineurin-dependent dephosphorylation. Using hanatoxin-mediated block of KV2.1 we show that, in cultured rat hippocampal neurons, glutamate stimulation leads to significant hyperpolarizing shifts in the voltage-dependent activation and inactivation gating properties of the KV2.1-component of delayed rectifier K+ (IK) currents. In computer models of hippocampal neurons, these glutamate-stimulated shifts in the gating of the KV2.1-component of IK lead to a dramatic suppression of action potential firing frequency. Current-clamp experiments in cultured rat hippocampal neurons showed glutamate-stimulation induced a similar suppression of neuronal firing frequency. Membrane depolarization also resulted in similar hyperpolarizing shifts in the voltage-dependent gating properties of neuronal IK currents, and suppression of neuronal firing. The glutamate-induced effects on neuronal firing were eliminated by hanatoxin, but not by dendrotoxin-K, a blocker of KV1.1-containing channels. These studies together demonstrate a specific contribution of modulation of KV2.1 channels in the activity-dependent regulation of intrinsic neuronal excitability.  相似文献   

10.
Wiser O  Qian X  Ehlers M  Ja WW  Roberts RW  Reuveny E  Jan YN  Jan LY 《Neuron》2006,50(4):561-573
G protein-activated inwardly rectifying potassium (GIRK) channels mediate slow synaptic inhibition and control neuronal excitability. It is unknown whether GIRK channels are subject to regulation by guanine dissociation inhibitor (GDI) proteins like LGN, a mammalian homolog of Drosophila Partner of Inscuteable (mPINS). Here we report that LGN increases basal GIRK current but reduces GIRK activation by metabotropic transmitter receptors coupled to Gi or Go, but not Gs. Moreover, expression of its N-terminal, TPR-containing protein interaction domains mimics the effects of LGN in mammalian cells, probably by releasing sequestered endogenous LGN. In hippocampal neurons, expression of LGN, or LGN fragments that mimic or enhance LGN activity, hyperpolarizes the resting potential due to increased basal GIRK activity and reduces excitability. Using Lenti virus for LGN RNAi to reduce endogenous LGN levels in hippocampal neurons, we further show an essential role of LGN for maintaining basal GIRK channel activity and for harnessing neuronal excitability.  相似文献   

11.
Abstract: Regulation of gene expression is one of the mechanisms by which neuronal activity elicits long-term changes in neuronal phenotype and function. Although activity-dependent induction of immediate-early genes has been extensively studied, much less is known about the late-response genes. We have investigated the activity-dependent regulation of δ-opioid receptor (DOR) mRNA levels in NG108-15 cells. Transsynaptic activation was mimicked by depolarization with 55 m M KCl or veratridine. Both treatments lead to a time-dependent increase of DOR mRNA levels. Ca2+ entry through L-type voltage-dependent Ca2+ channels activated by depolarization appears to be involved, because L-type channel blockers reduced the induction of DOR expression. Ca2+ binding to calmodulin is the next step in the signal transduction pathway, because a calmodulin antagonist, W7, reduced the effect of veratridine. A selective inhibitor of calmodulin kinases (KN-62) and cyclosporin, an inhibitor of calcineurin, also antagonized the depolarization-induced increase in DOR mRNA levels, which indicates that both calcium/calmodulin-dependent enzymes are involved in the activity-dependent induction of DOR gene expression. Induction of DOR gene expression by an activity-dependent increase in intracellular Ca2+ concentration may serve as a feedback regulatory mechanism because activation of DOR leads to hyperpolarization and lower excitability of neurons.  相似文献   

12.
P2X7 receptors are present in presynaptic membranes of motor synapses, but their regulatory role in modulation of neurotransmitter release remains poorly understood. P2X7 receptors may interact with pannexin 1 channels to form a purinergic signaling unit. The potential mechanism of P2X7 receptor-dependent modulation of acetylcholine (ACh) release was investigated by recording miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in neuromuscular junctions of wild-type (WT) and pannexin 1 knockout (Panx1?/?) mice. Modulation of P2X7 receptors with the selective inhibitor A740003 or the selective agonist BzATP did not alter the parameters of either spontaneous or evoked ACh release in WT mice. In Panx1?/? mice, BzATP-induced activation of P2X7 receptors resulted in a uniformly increased quantal content of EPPs during a short stimulation train. This effect was accompanied by an increase in the size of the readily releasable pool, while the release probability did not change. Inhibition of calmodulin by W-7 or of calcium/calmodulin-dependent kinase II (CaMKII) by KN-93 completely prevented the potentiating effect of BzATP on the EPP quantal content. The blockade of L-type calcium channels also prevented BzATP action on evoked synaptic activity. Thus, the activation of presynaptic P2X7 receptors in mice lacking pannexin 1 resulted in enhanced evoked ACh release. Such enhanced release was provoked by triggering the calmodulin- and CaMKII-dependent signaling pathway, followed by activation of presynaptic L-type calcium channels. We suggest that in WT mice, this pathway is downregulated due to pannexin 1-dependent tonic activation of inhibitory presynaptic purinergic receptors, which overcomes P2X7-mediated effects.  相似文献   

13.
14.
Kim J  Jung SC  Clemens AM  Petralia RS  Hoffman DA 《Neuron》2007,54(6):933-947
Voltage-gated A-type K+ channel Kv4.2 subunits are highly expressed in the dendrites of hippocampal CA1 neurons. However, little is known about the subcellular distribution and trafficking of Kv4.2-containing channels. Here we provide evidence for activity-dependent trafficking of Kv4.2 in hippocampal spines and dendrites. Live imaging and electrophysiological recordings showed that Kv4.2 internalization is induced rapidly upon glutamate receptor stimulation. Kv4.2 internalization was clathrin mediated and required NMDA receptor activation and Ca2+ influx. In dissociated hippocampal neurons, mEPSC amplitude depended on functional Kv4.2 expression level and was enhanced by stimuli that induced Kv4.2 internalization. Long-term potentiation (LTP) induced by brief glycine application resulted in synaptic insertion of GluR1-containing AMPA receptors along with Kv4.2 internalization. We also found evidence of Kv4.2 internalization upon synaptically evoked LTP in CA1 neurons of hippocampal slice cultures. These results present an additional mechanism for synaptic integration and plasticity through the activity-dependent regulation of Kv4.2 channel surface expression.  相似文献   

15.
Inflammation contributes to neurodegeneration in post-ischemic brain, diabetes, and Alzheimer's disease. Participants in this inflammatory response include activation of microglia and astrocytes. We studied the role of microglia treated with amyloid-β peptide (Aβ) on hemichannel activity of astrocytes subjected to hypoxia in high glucose. Reoxygenation after 3?h hypoxia in high glucose induced transient astroglial permeabilization via Cx43 hemichannels and reduction in intercellular communication via Cx43 cell-cell channels. Both responses were greater and longer lasting in astrocytes previously exposed for 24 h to conditioned medium from Aβ-treated microglia (CM-Aβ). The effects of CM-Aβ were mimicked by TNF-α and IL-1β and were abrogated by neutralizing TNF-α with soluble receptor and IL-1β with a receptor antagonist. Astrocytes under basal conditions protected neurons against hypoxia, but exposure to CM-Aβ made them toxic to neurons subjected to a sub-lethal hypoxia/reoxygenation episode, revealing the additive nature of the insults. Astrocytes exposed to CM-Aβ induced permeabilization of cortical neurons through activation of neuronal pannexin 1 (Panx1) hemichannels by ATP and glutamate released through astroglial Cx43 hemichannels. In agreement, inhibition of NMDA or P2X receptors only partially reduced the activation of neuronal Panx1 hemichannels and neuronal mortality, but simultaneous inhibition of both receptors completely prevented the neurotoxic response. Therefore, we suggest that responses to ATP and glutamate converge in activation of neuronal Panx1 hemichannels. Thus, we propose that blocking hemichannels expressed by astrocytes and/or neurons in the inflamed nervous system could represent a novel and alternative strategy to reduce neuronal loss in various pathological states including Alzheimer's disease, diabetes and ischemia.  相似文献   

16.
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.  相似文献   

17.
Locovei S  Scemes E  Qiu F  Spray DC  Dahl G 《FEBS letters》2007,581(3):483-488
The purinergic receptor P2X(7) is part of a complex signaling mechanism participating in a variety of physiological and pathological processes. Depending on the activation scheme, P2X(7) receptors in vivo are non-selective cation channels or form large pores that can mediate apoptotic cell death. Expression of P2X(7)R in Xenopus oocytes results exclusively in formation of a non-selective cation channel. However, here we show that co-expression of P2X(7)R with pannexin1 in oocytes leads to the complex response seen in many mammalian cells, including cell death with prolonged ATP application. While the cation channel activity is resistant to carbenoxolone treatment, this gap junction and hemichannel blocking drug suppressed the currents induced by ATP in pannexin1/P2X(7)R co-expressing cells. Thus, pannexin1 appears to be the molecular substrate for the permeabilization pore (or death receptor channel) recruited into the P2X(7)R signaling complex.  相似文献   

18.
In most central neurons, action potentials are followed by an afterhyperpolarization (AHP) that controls firing pattern and excitability. The medium and slow components of the AHP have been ascribed to the activation of small conductance Ca(2+)-activated potassium (SK) channels. Cloned SK channels are heteromeric complexes of SK alpha-subunits and calmodulin. The channels are activated by Ca(2+) binding to calmodulin that induces conformational changes resulting in channel opening, and channel deactivation is the reverse process brought about by dissociation of Ca(2+) from calmodulin. Here we show that SK channel gating is effectively modulated by 1-ethyl-2-benzimidazolinone (EBIO). Application of EBIO to cloned SK channels shifts the Ca(2+) concentration-response relation into the lower nanomolar range and slows channel deactivation by almost 10-fold. In hippocampal CA1 neurons, EBIO increased both the medium and slow AHP, strongly reducing electrical activity. Moreover, EBIO suppressed the hyperexcitability induced by low Mg(2+) in cultured cortical neurons. These results underscore the importance of SK channels for shaping the electrical response patterns of central neurons and suggest that modulating SK channel gating is a potent mechanism for controlling excitability in the central nervous system.  相似文献   

19.
Pannexin 1 forms a large membrane channel that, based on its biophysical properties and its expression pattern, is a prime candidate to represent an ATP release channel. Pannexin 1 channel activity is potentially deleterious for cells as indicated by its involvement in the P2X7 death complex. Here we describe a negative feedback loop controlling pannexin 1 channel activity. ATP, permeant to pannexin 1 channels, was found to inhibit its permeation pathway when applied extracellularly to oocytes expressing pannexin 1 exogenously. ATP analogues, including benzoylbenzoyl-ATP, suramin, and brilliant blue G were even more effective inhibitors of pannexin 1 currents than ATP. These compounds also attenuated the uptake of dyes by erythrocytes, which express pannexin 1. The rank order of the compounds in attenuation of pannexin 1 currents was similar to their binding affinities to the P2X7 receptor, except that receptor agonists and antagonists both were inhibitory to the channel. Mutational analysis identified R75 in pannexin 1 to be critical for ATP inhibition of pannexin 1 currents.  相似文献   

20.
Shah MM  Anderson AE  Leung V  Lin X  Johnston D 《Neuron》2004,44(3):495-508
The entorhinal cortex (EC) provides the predominant excitatory drive to the hippocampal CA1 and subicular neurons in chronic epilepsy. Discerning the mechanisms underlying signal integration within EC neurons is essential for understanding network excitability alterations involving the hippocampus during epilepsy. Twenty-four hours following a single seizure episode when there were no behavioral or electrographic seizures, we found enhanced spontaneous activity still present in the rat EC in vivo and in vitro. The increased excitability was accompanied by a profound reduction in I(h) in EC layer III neurons and a significant decline in HCN1 and HCN2 subunits that encode for h channels. Consequently, dendritic excitability was enhanced, resulting in increased neuronal firing despite hyperpolarized membrane potentials. The loss of I(h) and the increased neuronal excitability persisted for 1 week following seizures. Our results suggest that dendritic I(h) plays an important role in determining the excitability of EC layer III neurons and their associated neural networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号