首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (Ca2+ + Mg2+-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2+-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2+-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2+- and Mg2+-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

2.
Changes in the viscosity of the F-actin solutions which occur on addition of Ca2+ ions were investigated. The viscosity of F-actin decreased on addition of Ca2+ ions. The amount of Ca2+ ions needed to decrease the viscosity changed with pH of the solution, namely, 20~30 mm at pH 7, 15~20 mm at pH 6 and 5~10mm at pH 5.5. Other divalent cations had the same action on F-actin, but monovalent cations did not affect the F-actin viscosity even at the concentration as high as 1 m. Intrinsic viscosity of F-actin with and without Ca2+ions was 250 ±40 (ml/g) and 670 ±80 (ml/g), respectively. The cause of this viscosity change was discussed from the results of electron microscopic observation and light scattering measurements.  相似文献   

3.
In the presence of 1.0 mM ATP and MgCl2, the specific viscosity of suspensions of human erythrocyte ghosts decreases 35% in 20 minutes at 22°C. The changes in viscosity are a sensitive index of Mg-ATP dependent shape changes in these membranes. Low concentrations of Ca2+ (1 to 5 μM) inhibit Mg-ATP dependent viscosity changes. If ghosts were preincubated with 1 mM Mg-ATP and 20 μM A23187 to produce a maximal decrease in viscosity, addition of 10 μM Ca2+ to the preincubated ghosts increased the viscosity to levels observed in ghosts preincubated without ATP. Ca2+ (1 to 5 μM) also inhibited Mg2+ dependent phosphorylation 30% and stimulated dephosphorylation 25% in ghost membranes. These effects of Ca2+ on viscosity and phosphorylation may be due to a membrane bound Ca2+ phosphatase activity which dephosphorylates membranes phosphorylated by a Mg2+ dependent kinase activity.  相似文献   

4.
The regulatory roles of the components of the troponin-tropomyosin complex in the presence and absence of Mg2+ on the acto-S1 ATPase have been examined. The effect of free Mg2+ on the inhibition of the acto-S1 ATPase by rabbit skeletal troponin (Tn) was studied at S1 to actin ratios ranging from 0.17:1 to 2.5:1. These studies were performed using two Mg2+ concentrations: 2.5 mM Mg2+-2.5 mM ATP, conditions considered to have low free Mg2+; and 5.0 mM Mg2+-2.5 mM ATP, conditions providing a high free Mg2+ concentration of 2.5 mM. In the presence of high free Mg2+ (2.5 mM ATP-5.0 mM MgCl2) the Tn inhibition of acto-S1-TM ATPase increased by approximately 40–50% over a range of S1 to actin ratios of 0.17:1 to 2.5:1. The effect of free Mg2+ on increasing quantities of Tn in the absence or presence of tropomyosin was studied independently at two S1 to actin ratios (1:1 and 2:1). In the absence of TM, at 5 mM Mg2+ there is an additional 38% (1:1 S1 to actin) or 37% (2:1) decrease in the ATPase activity by Tn compared to 2.5 mM Mg2+. Similarly, in the presence of TM and Tn, Mg2+ exerts its effect at both S1 to actin ratios. Significantly, the inhibition by the IT complex in the presence of TM is unaffected by free Mg2+. Furthermore, ultracentrifugation binding studies using14C-iodoacetamide-labeled Tn and TM established that the Tn-TM regulatory complex was firmly bound to F-actin at both Mg2+ concentrations, indicating that faciliation of binding to F-actin by Mg2+ is not responsible for the increased inhibition. Hence, it is concluded from the data that Mg2+ binding and by analogy Ca2+ binding to the Ca2+-Mg2+ sites of TnC promotes muscle relaxation by inducing inhibition of the actomyosin ATPase, whereas Ca2+ binding to the Ca2+-specific sites promotes contraction by potentiating the ATPase. The inhibition of the acto-S1-TM ATPase by TnT has also been further examined. The data indicate that TnT exerts the same level of inhibition upon the ATPase as TnI or Tn. The inhibitory activity requires TM, and occurs to the same extent under conditions where TM alone would have either a potentiating (2:1 S1 to actin) or an inhibitory (1:1 S1 to actin) effect upon the ATPase. In the presence of TM the IT complex is a more effective inhibitor than either TnI, TnT, or Tn. The inhibitory activity of the IT complex is partially released by TnC in the absence of Ca2+. These observations, in conjunction with those by Chong, Asselbergs, and Hodges, which showed that the inhibition by TnT is partially released by TnC plus Ca2+, indicate that the role of TnT involves more than anchoring Tn to the thin filament.  相似文献   

5.
In autodigestion assays, endonucleaw activity in non-apoptotic HL-60 promydocytic leukemia cell nuclei cleaved the chromatin of he autologous cells to an oligonucleosomal length pattern. Both EGTA and EDTA inhibited the activation of endonuclease activity in isolated HL-60 cell nuclei. The inhibition by EDTA could be reversed by exogenous Ca2+. but not by exogenous Mg2+. In Ca2+/Mg2+-free nuclei digation buffer, addition of Ca2→ (1-10 mmol/L) induced endonuclease activity in the isolated nuclei, while addition of Mg2+ had no effect. In the presence of Ca2+(0.1 mmol/L), endonuclease activity was enhanced by exogenous Mg2+ (0.1-10mmol/L). These results suggest that the endonuclease responsible for internucleosomal DNA fragmentation in HL-60 cells during apoptosis is activated by Ca2+ and further modulated by Mg2+ in the presence of ca2+.  相似文献   

6.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold.Activation of K+-stimulated ATPase activity by Ca2+ was maximal at anionized Ca2+ concentration of approx. 1 μM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

7.
Experiments on the effects of varying concentrations of Ca2+ on the Mg2+ + Na+-dependent ATPase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase showed that Ca2+ was a partial inhibitor of this activity. When Ca2+ was added to the reaction mixture instead of Mg2+, there was a ouabain-sensitive Ca2+ + Na+-dependent ATPase activity the maximal velocity of which was 30 to 50% of that of Mg2+ + Na+-dependent activity. The apparent affinities of the enzyme for Ca2+ and CaATP seemed to be higher than those for Mg2+ and MgATP. Addition of K+, along with Ca2+ and Na+, increased the maximal velocity and the concentration of ATP required to obtain half-maximal velocity. The maximal velocity of the ouabain-sensitive Ca2+ + Na+ + K+-dependent ATPase was about two orders of magnitude smaller than that of Mg2+ + Na+ + K+-dependent activity. In agreement with previous observations, it was shown that in the presence of Ca2+, Na+, and ATP, an acid-stable phosphoenzyme was formed that was sensitive to either ADP or K+. The enzyme also exhibited a Ca2+ + Na+-dependent ADP-ATP exchange activity. Neither the inhibitory effects of Ca2+ on Mg2+-dependent activities, nor the Ca2+-dependent activities were influenced by the addition of calmodulin. Because of the presence of small quantities of endogenous Mg2+ in all reaction mixtures, it could not be determined whether the apparent Ca2+-dependent activities involved enzyme-substrate complexes containing Ca2+ as the divalent cation or both Ca2+ and Mg2+.  相似文献   

8.
The fluorescence of microdissected pancreatic islets of ob/ob-mice was studied by microscope photometry after incubation with 10 μM chlorotetracycline. In Krebs-Ringer bicarbonate buffer, excitation at 390 nm yielded peak emission at 530 nm, suggesting that chelated Ca2+ was the major source of fluorescence. In support of this interpretation, incubation in Ca2+-free buffer markedly decreased the fluorescence, whereas withdrawal of Mg2+ increased it. Raising the Mg2+ concentration to 15 mM suppressed the fluorescence. In the presence of Ca2+, the substitution of choline ions for Na+ increased the fluorescence considerably; in the absence of Ca2+, however, Na+ deficiency had only little effect. Control experiments showed that Na+ or choline ions had no effect on the fluorescence of Ca2+-chlorotetracycline in 70 or 90% methanol. In 90%, but not in 70%, methanol 15 mM Mg2+ slightly quenched the fluorescence from 2.5 mM Ca2+ and 10 μM chlorotetracycline. It is suggested that Na+, and perhaps Mg2+, tends to decrease the amount of membrane-bound Ca2+ in the pancreatic islets.  相似文献   

9.
45Ca2+ uptake by the human liver fluke Opisthorchis viverrini is enhanced by praziquantel. The drug-induced 45Ca2+ uptake was dependent on the presence of Ca2+ and was attenuated in the presence of 10 mM Mg2+. La3+ and vanadate at concentration of 1mM partially reduced the amount of 45Ca2+ uptake into the liver fluke in response to praziquantel treatment. The stimulating effect of praziquantel was eliminated in the presence of 10 μM verapamil. These findings suggest that praziquantel increases the permeability of the liver fluke tegument to Ca2+ probably by interfering with the mechanism that regulates Ca2+ binding or trnasport across the tegumental membrane.  相似文献   

10.
Specific activity and Ca2+-affinity of (Ca2++Mg2+)ATPase of calmodulin-depleted ghosts progressively increase during preincubation with 0.1–2 mM Ca2+. Concomitantly, the increment in ATPase activity caused by calmodulin and the binding of calmodulin to ghosts decrease. The effects of calcium ions are abolished by the addition of calmodulin. ATP protects the enzyme from a Ca2+-dependent decrease of the maximum activity but does not seem to influence the Ca2+-dependent transformation of the low Ca2+-affinity enzyme into a high Ca2+-affinity form.  相似文献   

11.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

12.
Mitochondria isolated from the late-exponential non-shaken culture of the ciliate protozoan Tetrahymena pyriformis GL was investigated. The presence of energy-dependent Ca2+ transport system was shown. In the main the properties of this system have been essentially the same as in mitochondria of vertebrate organisms. The isolated mitochondria contained 23±5 ng-ion Ca2+ per mg of protein. The intramitochondrial free concentration of Ca2+ was measured in the presence of uncoupler FCCP with the use of fluorescent Ca2+ chelator chlortetracycline and null point titration method. In the absence of phosphate, free [Ca2+] varied from 1 to 2.5 mM depending on the internal Ca2+ content. In the presence of 2 mM phosphate, free [Ca2+]in has not exceeded 0.1–0.3 mM. It was shown that ruthenium red and Mg2+ in different manner have an inhibitory effect on Ca2+ transport. Besides this, Mg2+ also has a stabilizing effect on mitochondria, possibly, by preventing passive ions leaks across the membrane.  相似文献   

13.
Kluyvera cryocrescens KA-103 showed a dispersed growth in Ca2+-free Polypepton medium, but formed flocs on addition of a sufficient concentration of Ca2+ to the bacterial cell suspension. Therefore, calcium adsorption properties and flocculation conditions were investigated using bacterial cells cultured in the Ca2+-free Polypepton medium. The bacterium required 1.5 mM Ca2+ or more for good flocculation (F>90%), but a cooperative effect of Na+ and Ca2+ on good flocculation was observed at lower concentrations of Ca2+. The Langmuir adsorption isotherm was used to describe the adsorption of Ca2+ by the bacterial cells.  相似文献   

14.
The inetic properties of exchangeable Ca2+ in isolated guinea-pig heart mitochondria were studied at 25°C in the presence of 0.9 mM free Mg2+, ATP, phosphate ions and 0.4 – 0.5 μM free Ca2+ using a 45Ca2+ exchange technique. The simplest system which was found to be consistent with the data was one in which two kinetically-distinct compartments of exchangeable Ca2+ are present in the mitochondria. In the presence of 6 mM Na and at 0.4 μM free Ca2+, the fractional transfer rates for the transport of Ca2+ from these compartments were found to be 0.6 and 0.05 min?1 and the quantities of exchangeable Ca2+ 0.04 and 0.2 μmol/g wet wt heart, respectively. The amount of 45Ca2+ exchanged increased when the concentration of inorganic phosphate was increased, and decreased slightly when the concentration of free Mg2+ was increased from 1 mM to 3 mM. The flux of Ca2+ across the boundaries of both compartments was inhibited by an increase in the concentration of extramitochondrial Na+. The contribution of mitochondrial Ca2+ to compartments of kinetically-distinct exchangeable Ca2+ observed in intact cardiac muscle is briefly discussed.  相似文献   

15.
Earlier studies have demonstrated that a high (mM) extracellular Ca2+ concentration triggers intracellular [Ca2+] signals with a consequent inhibition of bone resorptive activity. We now report that micromolar concentrations of the divalent cation, Ni2+, elicited rapid and concentration-dependent elevations of cytosolic [Ca2+]. The peak change in cytosolic [Ca2+] increased monotonically with the application of [Ni2+] in the 50–5,000 μM range in solutions containing 1.25 mM-[Ca2+] and 0.8 mM-[Mg2+]. The resulting concentration-response function suggested Ni2+-induced activation of a single class of binding site (Hill coefficient = 1). The triggering process also exhibited a concentration-dependent inactivation in which conditioning Ni2+ applications in the range 5–1,500 μM-[Ni2+] inhibited subsequent responses to a maximally effective [Ni2+] of 5,000 μM. Ni2+-induced cytosolic [Ca2+] responses were not dependent on extracellular [Ca2+]. Thus, when 5,000 μM-[Ni2+] was applied to osteoclasts in Ca2+-free, ethylene glycol bis-(aminoethyl ether) tetraacetic acid (EGTA)-containing medium (≤5 nM-[Ca2+] and 0.8 mM-[Mg2+]), cytosolic [Ca2+] responses resembled those obtained in the presence of 1.25 mM-[Ca2+]. Prior depletion of intracellular Ca2+ stores by ionomycin prevented Ni2+-induced cytosolic [Ca2+] responses, suggesting a major role for intracellular Ca2+ redistribution in the response to Ni2+. The effects of Ni2+ were also modulated by the extracellular concentration of the divalent cations, Ca2+ and Mg2+. When these cations were not added to the culture medium (0 μM-[Ca2+] and [Mg2+]), even low [Ni2+] ranging between 5 pM and 50 μM elicited progressively larger cytosolic [Ca2+] transients. However, the response magnitude decreased at higher, 250–5,000 μM-[Ni2+], resulting in a “hooked” concentration-response curve. Furthermore, increasing extracellular [Mg2+] or [Ca2+] (0–1 mM) diminished the response to 50 μM-[Ni2+], a concentration on the rising phase of the “hook.” Similar increases (0–10 mM) in extracellular [Mg2+] or [Ca2+] increased the response to 5,000 μM-[Ni2+], a concentration on the falling phase of the “hook”. These findings are consistent with the existence of a membrane receptor strongly sensitive to Ni2+ as well as the divalent cations, Ca2+ and Mg2+. Receptor occupancy apparently activates intracellular Ca2+ release followed by inactivation. Furthermore, repriming is independent of intracellular Ca2+ stores, suggesting that such inactivation operates at a transduction step between receptor occupancy and intracellular Ca2+ release. © 1993 Wiley-Liss, Inc.  相似文献   

16.
In the presence of MgCl2 and ATP, the specific viscosity of suspensions of unsealed freezethawed erythrocyte membranes decreased slowly with time at 37 °C. The decrease in viscosity was found to be an index of Mg-ATP-specific induced folding of these membranes. Mg-ATP-dependent shape or viscosity changes were found to be highly temperature dependent and the viscosity of these membranes did not decrease in the presence of 2 mm 5′-adenyl imidodiphosphate and MgCl2. Cyclic AMP, NaCl, or KCl did not have any effect on the rate of Mg-ATP-induced viscosity decreases. The Mg-ATP-dependent viscosity decreases were inhibited 100% by 1 mm chlorpromazine or 1 mmN-ethylmaleimide. Mg-ATP-dependent viscosity decreases were half-maximally inhibited by 1 μm Ca2+ and completely inhibited by 3–5 μm Ca2+. Ca2+ (5 μm) also inhibited Mg2+-dependent phosphorylation 25 to 30% in these membranes. However, if these membranes were preincubated in the absence of Ca2+ for greater than 10 min at 37 °C, 5 μm Ca2+ no longer inhibited Mg-ATP-dependent viscosity decreases and only inhibited Mg2+-dependent phosphorylation 5% in these preincubated membranes. Preincubation of these membranes at 37 °C for 10 min in the absence of Ca2+ also resulted in the loss of approximately 40 to 50% of the high-Ca2+ affinity Ca + Mg-ATPase activity. The presence of 5 μm Ca2+ in the preincubation medium protected against the loss of the inhibitory effect of Ca2+ on Mg2+-dependent phosphorylation and Mg-ATP-dependent viscosity decreases. The presence of Ca2+ in the preincubation medium also protected against the loss of Ca + Mg-ATPase activity in these membranes. It is hypothesized that freeze-thawed erythrocyte membranes contain a Ca2+ phosphatase activity which is temperature labile in the absence of Ca2+ and that this Ca2+ phosphatase activity may be involved in the regulation of shape of these membranes. Also discussed is the possible relationship of this Ca2+ phosphatase with Ca + Mg-ATPase activity and the problems inherent in studying Ca2+-regulated functions in freeze-thawed erythrocyte membranes.  相似文献   

17.
We measured the fluorescence static anisotropy and the time-resolved fluorescence anisotropy decay of F-actin labelled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine at 20°C in solutions containing 100 mM KCl and free Ca2+ at various concentrations. The average fluorescence anisotropy and the fluorescence rotational correlation time of actin decreased in the presence of micromolar concentrations of free Ca2+. The change of the rotational correlation time of labelled actin could not be explained by a variation of the actin critical concentration. We concluded therefore that F-actin undergoes a conformational change induced by Ca2+ binding. The binding constant was 6 × 106 M?1.  相似文献   

18.
Release of Ca2+ from the (Ca2+ + Mg2+)-ATPase into the interior of intact sarcoplasmic reticulum vesicles was measured using arsenazo III, a metallochromic indicator of Ca2+. Arsenazo III was placed inside the sarcoplasmic reticulum vesicles by making the vesicles transiently leaky with an osmotic gradient in the presence of arsenazo III. External arsenazo III was then removed by centrifugation. Addition of ATP to the (Ca2+ + Mg2+)-ATPase in the presence of Ca2+ causes the rapid phosphorylation of the enzyme at which time the bound Ca2+ becomes inaccessible to external EGTA. The release of Ca2+ from the (Ca2+ + Mg2+)-ATPase to the interior of the vesicle measured with intravesicular arsenazo III was much slower indicating that there is an occluded from the Ca2+-binding site which precedes the release of Ca2+ into the vesicle. The rate of Ca2+ accumulation by sarcoplasmic reticulum vesicles is increased by K+ (5–100 mM) and ATP (50–1000 μM) but the initial rate of Ca2+ translocation measured after the simultaneous addition of ATP and EGTA to vesicles that were preincubated in Ca2+ was not influenced by these concentrations of K+ and ATP.  相似文献   

19.
Regulation of the cardiac ryanodine receptor (RyR2) by intracellular Ca2+ and Mg2+ plays a key role in determining cardiac contraction and rhythmicity, but their role in regulating the human RyR2 remains poorly defined. The Ca2+- and Mg2+-dependent regulation of human RyR2 was recorded in artificial lipid bilayers in the presence of 2 mM ATP and compared with that in two commonly used animal models for RyR2 function (rat and sheep). Human RyR2 displayed cytoplasmic Ca2+ activation (Ka = 4 µM) and inhibition by cytoplasmic Mg2+ (Ki = 10 µM at 100 nM Ca2+) that was similar to RyR2 from rat and sheep obtained under the same experimental conditions. However, in the presence of 0.1 mM Ca2+, RyR2s from human were 3.5-fold less sensitive to cytoplasmic Mg2+ inhibition than those from sheep and rat. The Ka values for luminal Ca2+ activation were similar in the three species (35 µM for human, 12 µM for sheep, and 10 µM for rat). From the relationship between open probability and luminal [Ca2+], the peak open probability for the human RyR2 was approximately the same as that for sheep, and both were ∼10-fold greater than that for rat RyR2. Human RyR2 also showed the same sensitivity to luminal Mg2+ as that from sheep, whereas rat RyR2 was 10-fold more sensitive. In all species, modulation of RyR2 gating by luminal Ca2+ and Mg2+ only occurred when cytoplasmic [Ca2+] was <3 µM. The activation response of RyR2 to luminal and cytoplasmic Ca2+ was strongly dependent on the Mg2+ concentration. Addition of physiological levels (1 mM) of Mg2+ raised the Ka for cytoplasmic Ca2+ to 30 µM (human and sheep) or 90 µM (rat) and raised the Ka for luminal Ca2+ to ∼1 mM in all species. This is the first report of the regulation by Ca2+ and Mg2+ of native RyR2 receptor activity from healthy human hearts.  相似文献   

20.
Vesicles isolated from rat heart, particularly enriched in sarcolemma markers, were examined for their sidedness by investigation of side-specific interactions of modulators with the asymmetric (Na+ + K+)-ATPase and adenylate cyclase complex. The membrane preparation with the properties expected for inside-out vesicles showed the highest rate of ATP-driven Ca2+ transport. The Ca2+ pump was stimulated 1.7- and 2.1-fold by external Na+ and K+, respectively, the half-maximal activation occurring at 35 mM monovalent cation concentration. In vesicles loaded with Ca2+ by pump action in a medium containing 160 mM KCl, a slow spontaneous release of Ca2+ started after 2 min. The rate of this release could be dramatically increased by the addition of 40 mM NaCl to the external medium. In contrast, 40 mM KCl exerted no appreciable effect on vesicles loaded with Ca2+ in a medium containing 160 mM NaCl. Ca2+ movements were also studied in the absence of ATP and Mg2+. Vesicles containing an outwardly directed Na+ gradient showed the highest Ca2+ uptake activity. These findings suggested the operation of a Ca2+/Na+ antiporter in addition to the active Ca2+ pump in these sarcolemmal vesicles. A valinomycin-induced inward K+-diffusion potential stimulated the Na+- Ca2+ exchange, suggesting its electrogenic nature. If in the absence of ATP and Mg2+ the transmembrane Nai+/Nao+ gradient exceeded 160/15 mM concentrations, Ca2+ uptake could be stimulated by the addition of 5 mM oxalate, indicating Na+ gradient-induced Ca2+ uptake to be a translocation of Ca2+ to the lumen of the vesicle. A sarcoplasmic reticulum contamination, removed by further sucrose gradient fractionation, contained rather low Na+-Ca2+ exchange activity. This result suggests that the activity can be entirely accounted for by the sarcolemmal content of the cardiac membrane preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号