首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyamines are small molecules associated with a wide variety of physiological functions. Bacterial pathogens have developed subtle strategies to exploit polyamines or manipulate polyamine-related processes to optimize fitness within the host. During the transition from its innocuous E. coli ancestor, Shigella, the aetiological agent of bacillary dysentery, has undergone drastic genomic rearrangements affecting the polyamine profile. A pathoadaptation process involving the speG gene and the cad operon has led to spermidine accumulation and loss of cadaverine. While a higher spermidine content promotes the survival of Shigella within infected macrophages, the lack of cadaverine boosts the pathogenic potential of the bacterium in host tissues. Enteroinvasive E. coli (EIEC) display the same pathogenicity process as Shigella, but have a higher infectious dose and a higher metabolic activity. Pathoadaption events affecting the cad locus have occurred also in EIEC, silencing cadaverine production. Since EIEC are commonly regarded as evolutionary intermediates between E. coli and Shigella, we investigated on their polyamine profile in order to better understand which changes have occurred along the path to pathogenicity. By functional and molecular analyses carried out in EIEC strains belonging to different serotypes, we show that speG has been silenced in one strain only, favouring resistance to oxidative stress conditions and survival within macrophages. At the same time, we observe that the content of spermidine and putrescine, a relevant intermediate in the synthesis of spermidine, is higher in all strains as compared to E. coli. This may represent an evolutionary response to the lack of cadaverine. Indeed, restoring cadaverine synthesis decreases the expression of the speC gene, whose product affects putrescine production. In the light of these results, we discuss the possible impact of pathoadaptation events on the evolutionary emergence of a polyamine profile favouring to the pathogenic lifestyle of Shigella and EIEC.  相似文献   

2.
Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σ(E), an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σ(E) regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths.  相似文献   

3.
The possibility of obtaining recombinant fibrillogenic fusion proteins such as transthyretin (TTR) and β2-microglobulin (β2M) with a superfolder green fluorescent protein (sfGFP) was studied. According to the literature data, sfGFP is resistant to denaturating influences, does not aggregate during renaturation, possesses improved kinetic characteristics of folding, and folds well when fused to different polypeptides. The corresponding DNA constructs for expression in Escherichia coli were created. It could be shown that during expression of these constructs in E. coli, soluble forms of the fusion proteins are synthesized. Efficient isolation of the fusion proteins was performed with the help of nickel-affinity chromatography. For this purpose a polyhistidine sequence (6-His-tag) was incorporated into the C-terminus of the sfGFP. We could show that the purified fusion proteins contained full-size sequences of the most amyloidogenic TTR variant, TTR(L55P) and β2M, and also sfGFP possessing fluorescent properties. In the course of fibrillogenesis both fusion proteins demonstrated their ability to form fibrils that were clearly detectable by atomic force microscopy. Furthermore, with the help of confocal microscopy we were able to reveal structures (exhibiting fluorescence) that are formed during fibrillogenesis. Thus, the use of sfGFP has made it possible to avoid formation of inclusion bodies (IB) during the synthesis of recombinant fusion proteins and to obtain soluble forms of TTR(L55P) and β2M that are suitable for further studies.  相似文献   

4.
Molecular Genetics and Genomics - Analysis of λ phage infection of the host mutant ER437 by SDS polyacrylamide gel electrophoresis and autoradiography has revealed altered expression of...  相似文献   

5.
During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the β sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-strand clamps are thought to be bound by the replisome from solution and loaded a new for every fragment. Here, we discuss a surprising, alternative lagging-strand synthesis mechanism: efficient replication in the absence of any clamps other than those assembled with the replisome. Using single-molecule experiments, we show that replication complexes pre-assembled on DNA support synthesis of multiple Okazaki fragments in the absence of excess β clamps. The processivity of these replisomes, but not the number of synthesized Okazaki fragments, is dependent on the frequency of RNA-primer synthesis. These results broaden our understanding of lagging-strand synthesis and emphasize the stability of the replisome to continue synthesis without new clamps.  相似文献   

6.
The prevalence of Escherichia coli O157 in Scottish beef cattle at abattoir was found to be greater during the cooler months [11.2% (95% CI, 8.4-13.9%)] compared to the warmer months [7.5% (95% CI, 5.4-9.6%)]; the reverse of seasonality of human infections. However, high shedding beef cattle (excreting 10(-4) g(-1)) appear to shed greater concentrations of E. coli O157 in the warmer months which may partly explain increased human infection seasonality at this time.  相似文献   

7.
Full-length antibodies and antibodies that ferry a cargo to target cells are desired biopharmaceuticals. We describe the production of full-length IgGs and IgG-toxin fusion proteins in E. coli. In the presented examples of anti CD30 and anti EGF-receptor antibodies, the antibody heavy and light chains or toxin fusions thereof were expressed in separate bacterial cultures, where they accumulated as insoluble inclusion bodies. Following refolding and purification, high yields (up to 50 mg/L of shake flask culture) of highly purified (>90%) full-length antibodies and antibody-toxin fusions were obtained. The bacterially produced antibodies, named “Inclonals,” equaled the performance of the same IgGs that were produced using conventional mammalian cell culture in binding properties as well as in cell killing potency. The rapid and cost effective IgG production process and the high quality of the resultant product may make the bacterial production of full-length IgG and IgG-drug fusion proteins an attractive option for antibody production and a significant contribution to recombinant antibody technology.Key words: IgG, IgG-toxin fusion protein, CD30, EGFR, PE38, inclusion bodies, refolding  相似文献   

8.
During exponential growth some cells of E. coli undergo senescence mediated by asymmetric segregation of damaged components, particularly protein aggregates. We showed previously that functional cell division asymmetry in E. coli was responsive to the nutritional environment. Short term exposure as well as long term selection in low calorie environments led to greater cell division symmetry and decreased frequency of senescent cells as compared to high calorie environments. We show here that long term selection in low nutrient environment decreased protein aggregation as revealed by fluorescence microscopy and proportion of insoluble proteins. Across selection lines protein aggregation was correlated significantly positively with the RNA content, presumably indicating metabolic rate. This suggests that the effects of caloric restriction on cell division symmetry and aging in E. coli may work via altered protein handling mechanisms. The demonstrable effects of long term selection on protein aggregation suggest that protein aggregation is an evolvable phenomenon rather than being a passive inevitable process. The aggregated proteins progressively disappeared on facing starvation indicating degradation and recycling demonstrating that protein aggregation is a reversible process in E. coli.  相似文献   

9.
以大肠杆菌基因组DNA为模板,设计引物扩增得到天冬氨酸酶基因,将其重组于胞内融合表达型T载体中,重组质粒转化表达宿主大肠杆菌BL21(DE3)。SDS-PAGE分析表明,工程菌经IPTG诱导,表达大量表观分子量约75kD的融合蛋白。经试验,工程菌细胞具有较高的天冬氨酸酶活性,融合形式的酶最适温度37℃,最适pH8.5,融合伴侣DsbA的存在对酶活没有影响。  相似文献   

10.
11.
Molecular Genetics and Genomics - This study deals with the effects of a temperature-sensitive (ts) mutation at the gene encoding the DNA gyrase B subunit (gyrB ts) and a deletion of the top gene...  相似文献   

12.
13.
CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed ‘Adaptation’, which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed ‘Interference’. Adaptation can interact with interference (‘primed’), or is independent of it (‘naïve’). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration.  相似文献   

14.
采用PCR技术从E.coli基因组片中克隆出碱性磷酸酯酶的启动子和信号肽序列,在PhoA启动子5端设计了EcoRⅠ酶位点,在信号肽编码序列3端设计了HindⅢ酶切位点,将PCR产物酶切后EcoRⅠ-HindⅢ片段克隆至pBR322的EcoRⅠ-HindⅢ倍点,组构出含有PhoA启动子和信号肽序列的分泌表达载体pBM-Pho-,之后将人表皮生长因子的成熟肽基因克隆至该载体,使之有E.coli中获得分  相似文献   

15.
Interferon gamma (IFN-γ) is an important immunoregulatory cytokine that has a central role against viral and bacterial infections. In this study, the cDNA encoding 141 amino acids of mature IFN-γ from mice splenocytes was cloned in a prokaryotic expression vector pQE 30. Optimization of expression conditions resulted in high IFN-γ protein. Western blot showed that recombinant IFN-γ was specifically recognized by its counterpart anti-mouse IFN-γ antibodies. In vitro dose-dependent studies, with A549 and HeLa cell lines, showed that cloned IFN-γ was safe and had no effect on cell proliferation. The protein prediction and analysis using SOPMA program, revealed that IFN-γ had 80 α-helices, 8 β-turns jointed by 9 extended strands and 44 random coils. A total of four major clusters were observed with murine IFN-γ sharing 39 % homology with human IFN-γ. Pair-wise alignment studies with human revealed 26 % identity and 43.3 % similarity. The recovery of bioactive proteins from inclusion bodies (IBs) is a complex process and various protocols have been developed. We report here a simple, robust and inexpensive purification approach for obtaining recombinant IFN-γ protein expressed as IBs in E.coli.  相似文献   

16.
The relative weight of electrostatic interactions and hydrophobic forces in the process of membrane disruption caused by E. coliα-haemolysin (HlyA) has been studied with a purified protein preparation and a model system consisting of large unilamellar vesicles loaded with water-soluble fluorescent probes. Vesicles were prepared in buffers of different ionic strengths, or pHs, and the net surface charge of the bilayers was also modified by addition of negatively (e.g., phosphatidylinositol) or positively (e.g., stearylamine) charged lipids. The results can be interpreted in terms of a multiple equilibrium in which α-haemolysin may exist: aggregated HlyA ⇄ monomeric HlyA ⇄ membrane-bound HlyA. In these equilibria both electrostatic and hydrophobic forces are significant. Electrostatic forces become substantial under certain circumstances, e.g., membrane binding when bilayer and protein have opposite electric charges. Protein adsorption to the bilayer is more sensitive to electrostatic forces than membrane disruption itself. In the latter case, the irreversible nature of protein insertion may overcome electrostatic repulsions. Also of interest is the complex effect of pH on the degree of aggregation of an amphipathic toxin like α-haemolysin, since pH changes are not only influencing the net protein charge but may also be inducing protein conformational transitions shown by changes in the protein intrinsic fluorescence and in its susceptibility to protease digestion, that appear to regulate the presence of hydrophobic patches at the surface of the molecule, thus modifying the ability of the toxin to either aggregate or become inserted in membranes. Received: 29 October 1996/Revised: 4 February 1997  相似文献   

17.
18.
19.
An E. coli strain carrying a fusion of the malE and lacZ genes is induced for the synthesis of a hybrid protein, consisting of the N-terminal part of the maltose-binding protein and the enzymatically active C-terminal part of β-galactosidase, by addition of maltose to cells. The secretion of the protein is initiated by the signal peptide attached to the N terminus of the maltose-binding protein sequence, but is not completed, presumably because the β-galactosidase moiety of the hybrid protein interferes with the passage of the polypeptide through the cytoplasmic membrane. Thus the protein becomes stuck to the cytoplasmic membrane. Under such conditions, periplasmic proteins, including maltose-binding protein (encoded by the malE gene) and alkaline phosphatase, and the major outer-membrane proteins, including OmpF, OmpA and probably lipoprotein, are synthesized as precursor forms with unprocessed signal sequences. This effect is observed within 15 min after high levels of induction are achieved. The simplest explanation for these results and those of pulse-chase experiments is that specific sites in the cytoplasmic membrane become progressively occupied by the hybrid protein, resulting in an inhibition of normal localization and processing of periplasmic and outer-membrane proteins. These results suggest that most of the periplasmic and outer-membrane proteins share a common step in localization before the polypeptide becomes accessible to the processing enzyme. If this interpretation is correct, we can estimate that an E. coli cell has roughly 2 × 104 such sites in the cytoplasmic membrane. A system is described for detecting the precursor of any exported protein.  相似文献   

20.
In order to assess the feasibility of a high-pressure immunodesorption process using a β-galactosidase-anti-/3-galactosidase complex as a model, the influence of high hydrostatic pressure on the inactivation of E. coli /3-galactosidase has been investigated. The irreversible activity loss of β-galactosidase was studied as a function of pH and temperature for pressures comprised between atmospheric pressure and 500 megapascal (MPa; 1 MPa = 10 bar). This enabled us to establish a practical pressure-temperature diagram of stability for this enzyme. The stability domains determined thus appeared to be strongly dependent on the pH under atmospheric pressure of the phosphate buffer employed for pressurisation. Therefore, to interpret meaningfully this result, the influence of pressure on the pH-activity curve of β-galactosidase was investigated by using a high-pressure stopped-flow device. It appeared that the pH-activity curve of this enzyme was also reversibly affected by pressures lower than 150 MPa. An interpretation of these results in relation to the high-pressure induced changes of ionisation constants is proposed. For our practical purpose, the implications for the elaboration of a high-pressure immunodesorption process using /3-galactosidase as a tag, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号