首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spore pool glutamic acid as a metabolite in germination   总被引:5,自引:4,他引:5       下载免费PDF全文
Spore glutamic acid pools were examined in dormant and germinating spores using colorimetric and (14)C analytical procedures. Germination of spores of Bacillus megaterium (parent strain), initiated by d-glucose, was accompanied by a rapid drop in the level of spore pool glutamate, from 12.0 mug/mg of dry spores to 7.7 mug/mg of dry spores after 30 sec of germination. Similar decreases in extractable spore pool glutamate were observed with l-alanine-initiated germination of B. licheniformis spores. On the other hand, glutamate pools of mutant spores of B. megaterium, with a requirement of gamma-aminobutyric acid for spore germination, remained unchanged for 9 min of germination, at which time more than 50% of the spore population had germinated. Evidence for conversion of spore pool glutamate to gamma-aminobutyric acid during germination of spores of B. megaterium (parent strain) was obtained.  相似文献   

2.
A temperature-sensitive mutant of Neurospora crassa, with reduced levels of protein synthesis at 37°C, was used to identify some essential events in conidial germination. Conidia of mutant strain psi-1 were incubated for 2 hr at 37°C and then shifted to 20°C. Germination was inhibited at 37°C, but commenced after 1.5 hr at 20°C. Increases in aspartate transcarbamylase activity, cell wall synthesis, and nuclear number preceded germination. However, increases in glutamate dehydrogenase activity, amino acid uptake, and DNA synthesis were inhibited prior to germination. Although all of these events were correlated with germination in control cultures of the mutant at 20°C and of its parent strain at 20 and 37°C, some events were apparently not essential for germination. The requirement for aspartate transcarbamylase activity was demonstrated independently by the failure of strain pyr-3d (lacking the activity) to germinate in the absence of uridine. The dispensability of glutamate dehydrogenase activity and DNA synthesis for the germination of some conidia was verified by the germination of strain am-1 (lacking glutamate dehydrogenase activity) in the absence of glutamate and by the germination of the parent strain in the presence of hydroxyurea (an inhibitor of DNA synthesis). These findings identify some landmarks in germination which may be useful in further studies of the regulation of a developmental program. They also provide preliminary evidence that the resting conidia may contain nuclei arrested at different stages of their division cycle.  相似文献   

3.
The levels of the endogenous amino acid pools in conidia, germinating conidia, and mycelia of wild-type Neurospora crassa were measured. Three different chromatographic procedures employing the amino acid analyzer were used to identify and quantitatively measure 28 different ninhydrin-positive compounds. All of the common amino acids were detected in conidial extracts except proline, methionine, and cystine. The levels of these three amino acid pools were also very low in mycelia. During the first hour of germination in minimal medium, the levels of most of the free amino acid pools decreased. The pool of glutamic acid, the predominant free amino acid in conidia, decreased 70% during the first hour. Very little glutamic acid or any other amino acid was excreted into the medium. During the first 20 min of germination, the decrease in the glutamic acid pool was nearly equivalent to the increase in the aspartic acid pool. The aspartic acid and lambda-aminobutyric acid pools were the only amino acid pools that increased to maximum levels within the first 20 min of germination and then decreased. It is proposed that an important metabolic event that occurs during the early stages of conidial germination is the production of reduced pyridine nucleotides. The degradation of the large glutamic acid pool existing in the conidia (2.5% of the conidial dry weight) could produce these reduced coenzymes.  相似文献   

4.
Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged.  相似文献   

5.
γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components.  相似文献   

6.
The fed-batch culture system was employed to enhance production of α-ketoglutarate (α-KG) by the strainsof Corynebacterium glutamicum, whose genes encoding the key enzymes responsible for the biosynthesis of L-glutamate from α-KG were deleted. In a shake flask fermentation, C. glutamicum JH110 in which the 3 genes, gdh (encoding glutamate dehydrogenase), gltB (encoding glutamate synthase), and aceA (encoding isocitrate lyase) were disrupted showed the highest production of α-KG (12.4 g/L) compared to the strains JH102 (gdh mutant), JH103 (gltB mutant), and JH107 (gdh gltB double mutant). In the fed-batch cultures using a 5 L-jar fermenter, the strain JH107 produced more α-KG (19.5 g/L), but less glutamic acid (23.3 g/L) than those produced by the parent strain HH109, as well as JH102. The production of α-KG was significantly enhanced and the accumulation of glutamicacid was minimized by the ammonium-limited fed-batch cultures employing C. glutamicum JH107. Further improvement of α-KG production by the strain JH107 was achieved through the ammonium-limited fed-batch culture with the feeding of molasses, and the levels of α-KG and glutamic acid produced were 51.1 and 0.01 g/L, respectively.  相似文献   

7.
8.
A Messer  D Gordon 《Life sciences》1979,25(26):2217-2221
The mouse mutant dystonia musculorum shows many of the symptoms of of human dystonics. In this study whole tissue samples of mutant striatum and substantia nigra showed almost 50% less γ-amino butyric acid (GABA) biosynthetic capacity than controls of the same inbred strain. Hypothalamic values were unchanged. The defect appears to be one of substrate localization, since both crude extract enzyme activity and the fractional conversion of glutamate to GABA were unaffected by the mutation. When tissue is disrupted, high-affinity synaptosomal uptake to glutamate does not appear to be affected; therefore an endogenous inhibitor of glutamate transport is postulated for the mutant.  相似文献   

9.
Gamma-aminobutyric acid (GABA) is a non-essential amino acid and a precursor of pyrrolidone, a monomer of nylon 4. GABA can be biosynthesized through the decarboxylation of l-glutamate by glutamate decarboxylase. In this study, the effects of glutamate decarboxylase (gadA, gadB), glutamate/GABA antiporter (gadC) and GABA aminotransferase (gabT) on GABA production were investigated in Escherichia coli. Glutamate decarboxylase was overexpressed alone or with the glutamate/GABA antiporter to enhance GABA synthesis. GABA aminotransferase, which redirects GABA into the TCA cycle, was knock-out mutated. When gadB and gadC were co-overexpressed in the gabT mutant strain, a final GABA concentration of 5.46 g/l was obtained from 10 g/l of monosodium glutamate (MSG), which corresponded to a GABA yield of 89.5%.  相似文献   

10.
The nucleotide sequences of operator-proximal tryptophan messenger RNA of Escherichia coli from strains with mutations very early in trpE have been determined. A frameshift mutant, trpE9777fs, has an additional A residue in the region coding for amino acids 4 and 5 of the trpE polypeptide. The other mutant, trpE9914am, exhibits an amber codon corresponding to the codon normally specifying amino acid residue 9 (glutamic acid) of the trpE polypeptide. These results demonstrate that the site of the trpE9777fs mutation precedes that of the trpE9914am mutation by 9 to 15 nucleotides.  相似文献   

11.
Glutamic acid decarboxylase (GAD) from Neurospora crassa was assayed in dormant and germinating conidia that had been permeabilized by toluene and methanol. N. crassa conidia contained 10 times the GAD activity found in vegetativemycelia. During conidial germination, GAD activity rapidly decreased to low levels before germ tubes appeared. GAD activity in germinating conidia closely followed the decreasing rate of glutamic acid metabolism. Inhibiting protein synthesis partially blocked the decrease in GAD activity, but eliminating exogenous carbon sources did not alter the initial rate of decrease in this enzyme. However, when conidia were incubated for more than 3 h in distilled water, GAD activity began to increase and eventually reached levels comparable to those in dormant conidia. Either GAD was reversibly inactivated or this enzyme could be synthesized from endogenous storage compounds when conidia were incubated in distilled water. These results are consistent with the hypothesis that GAD is a developmentally regulated enzyme that is responsible for catalyzing the first step in the metabolism of the large pool of free glutamic acid during conidial germination.  相似文献   

12.
Kung-Som is a popular traditional Thai fermented shrimp product. It is rich in glutamic acid, which is the major substrate for the biosynthesis of gamma-aminobutyric acid (GABA) by lactic acid bacteria (LAB). In the present study, LAB from Kung-Som were isolated, screened for GABA formation, and the two isolates that transform glutamic acid most efficiently into GABA were identified. Based on the API-CHL50 fermentation profile and a phylogenetic tree of 16S rDNA sequences, strain CS3 and CS5 were identified as Lactobacillus futsaii, which was for the first time shown to be a promising GABA producer. L. futsaii CS3 was the most efficient microorganism for the conversion of 25 mg/mL monosodium glutamate (MSG) to GABA, with a maximum yield of more than 99% conversion rate within 72 h. The open reading frame (ORF) of the glutamate decarboxylase (gad) gene was identified by PCR. It consists of 1410 bp encoding a polypeptide of 469 amino acids with a predicted molecular weight of 53.64 kDa and an isoelectric point (pI) of 5.56. Moreover, a good quality of the constructed model of L. futsaii CS3 was also estimated. Our results indicate that L. futsaii CS3 could be of interest for the production of GABA-enriched foods by fermentation and for other value-added products.  相似文献   

13.
Changes in the concentrations of gamma-aminobutyric acid (GABA), soluble calcium ions, glutamic acid, and the activity of glutamate decarboxylase (GAD) were investigated in non-germinated vs. germinated brown rice. Brown rice was germinated for 72 h by applying each of the following solutions: (1) distilled water, (2) 5 mM lactic acid, (3) 50 ppm chitosan in 5 mM lactic acid, (4) 5 mM glutamic acid, and (5) 50 ppm chitosan in 5 mM glutamic acid. GABA concentrations were enhanced in all of the germinated brown rice when compared to the non-germinated brown rice. The GABA concentration was highest in the chitosan/glutamic acid that germinated brown rice at 2,011 nmol/g fresh weight, which was 13 times higher than the GABA concentration in the non-germinated brown rice at 154 nmol/g fresh weight. The concentrations of glutamic acid were significantly decreased in all of the germinated rice, regardless of the germination solution. Soluble calcium and GAD were higher in the germinated brown rice with the chitosan/glutamic acid solution when compared to the rice that was germinated in the other solutions. GAD that was partially purified from germinated brown rice was stimulated about 3.6-fold by the addition of calmodulin in the presence of calcium. These data show that the germination of brown rice in a chitosan/glutamic acid solution can significantly increase GABA synthesis activity and the concentration of GABA.  相似文献   

14.
Aspergillus niger reproduces asexually by forming conidia. Here, the minimal nutrient requirements were studied that activate germination of A. niger conidia. To this end, germination was monitored in time using an oCelloScope imager. Data was used as input in an asymmetric model to describe the process of swelling and germ tube formation. The maximum number of spores (Pmax) that were activated to swell and to form germ tubes was 32.54% and 20.51%, respectively, in minimal medium with 50 mM glucose. In contrast, Pmax of swelling and germ tube formation was <1% in water or 50 mM glucose. Combining 50 mM glucose with either NaNO3, KH2PO4, or MgSO4 increased Pmax of swelling and germination up to 15.25% and 5.4%, respectively, while combining glucose with two of these inorganic components further increased these Pmax values up to 25.85% and 10.99%. Next, 10 mM amino acid was combined with a phosphate buffer and MgSO4. High (e.g. proline), intermediate and low (e.g. cysteine) inducing amino acids were distinguished. Together, a combination of an inducing carbon source with either inorganic phosphate, inorganic nitrogen or magnesium sulphate is the minimum requirement for A. niger conidia to germinate.  相似文献   

15.
16.
Conidia of four adenine auxotrophs (ad 9, ad 3B, ad 8 and ad 4 of Neurospora crassa differ in their ability to germinate on adenine-deficient medium. A large percentage of the ad 9 and ad 3B mutant conidia germinate while those of ad 8 and ad 4 mutant do not. No correlation was found between the size of the conidial purine reserves and the conidial ability to germinate. In all the strains the major fraction of the conidial purine reserved pools was inosine. The ad 8 and ad 4 mutants are blocked after IMP formation in the adenine biosynthetic pathway and therefore cannot use the stored inosine for germination. Pool-utilization studies indicated that in all strains investigated some of the purine reserved were lost from the conidia during incubation. In the most readily germinating strain, ad 9, only small amounts of the purine pool were lost from the conidia and a large portion of the reserve pool was used for nucleic acid synthesis. The nature of the purine reserves present in the conidia, and the ability of the strains to prevent loss of the stored purines from the conidia appear to be among the factors influencing the conidial germination of the adenine mutants of N. crassa.  相似文献   

17.
Conidia of four adenine auxotrophs (ad 9, ad 3B, ad 8 and ad 4) of Neurospora crassa differ in their ability to germinate on adenine-deficient medium. A large percentage of the ad 9 and ad 3B mutant conidia germinate while those of ad 8 and ad 4 mutant do not. No correlation was found between the size of the conidial purine reserves and the conidial ability to germinate. In all the strains the major fraction of the conidial purine reserve pools was inosine. The ad 8 and ad 4 mutants are blocked after IMP formation in the adenine biosynthetic pathway and therefore cannot use the stored inosine for germination. Pool-utilization studies indicated that in all strains investigated some of the purine reserves were lost from the conidia during incubation. In the most readily germinating strain, ad 9, only small amounts of the purine pool were lost from the conidia and a large portion of the reserve pool was used for nucleic acid synthesis. The nature of the purine reserves present in the conidia, and the ability of the strains to prevent loss of the stored purines from the conidia appear to be among the factors influencing the conidial germination of the adenine mutants of N. crassa.  相似文献   

18.
The am locus of Neurospora codes for NADP-dependent glutamate dehydrogenase (GDH). Four new am mutants that produced mutationally altered GDH have been characterized. Mutant am119 is a CRM-negative, complementing mutant that maps between am2 and am1. The other three mutants are CRM formers that produce varieties of GDH that can be activated by glutamate or succinate. The GDH of am130 and am131 is similar in terms of activation properties to that of am3. The GDH of am122 requires very high concentrations of dicarboxylate for activity. The mutation in am130 maps between am14 and am2 and resulted in a replacement at residue 75 of the GDH (pro → ser). The mutation in am122 maps near am11 and apparently resulted in the replacement of the tryptophan residue at position 389 with an unknown amino acid. The mutation in am131 maps between am2 and am1.  相似文献   

19.
Escherichia coli is engineered for γ‐aminobutyrate (GABA) production in glucose minimal medium. For this, overexpression of mutant glutamate decarboxylase (GadB) and mutant glutamate/GABA antiporter (GadC), as well as deletion of GABA transaminase (GabT), are accomplished. In addition, the carbon flux to the tricarboxylic acid cycle is engineered by the overexpression of gltA, ppc, or both. The overexpression of citrate synthase (CS), encoded by gltA, increases GABA productivity, as expected. Meanwhile, the overexpression of phosphoenolpyruvate carboxylase (PPC) causes a decrease in the rate of glucose uptake, resulting in a decrease in GABA production. The phenotypes of the strains are characterized by 13C metabolic flux analysis (13C MFA). The results reveal that CS overexpression increases glycolysis and anaplerotic reaction rates, as well as the citrate synthesis rate, while PPC overexpression causes little changes in metabolic fluxes, but reduces glucose uptake rate. The engineered strain produces 1.2 g L?1 of GABA from glucose. Thus, by using 13C MFA, important information is obtained for designing metabolically engineered strains for efficient GABA production.  相似文献   

20.
The location of the non-essential T4 mutant uvs79, with defective replication repair, is described. After crosses with double mutants dispersed over the early region of T4, a linkage was observed with the double mutant am41 : am42. For more accurate location, crosses were made with single mutants. Uvs79 proved to be located between mutants amC23 and amN81 in gene 41, as shown by 3-point crosses. No genetic complementation with respect to multiplicity reactivation was found between amN81 and uvs79 after a co-infection of an su? host. Apparently, mutant amN81 is disturbed as to replication repair and, owing to its lack of DNA synthesis, also in replication-dependent recombination repair. Consequently, the product of gene 41 has a function additional to its RNA-primer induction during replication of undamaged DNA. Presumably, the product of gene 41 induces RNA primers opposite DNA regions containing lesions. This capability is believed to be specifically affected by the uvs79 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号