首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The changes in water diffusion across human erythrocyte membranes following exposure to various inhibitors and proteolytic enzymes have been studied on isolated erythrocytes suspended in isotonic buffered solutions. An important issue was to investigate whether the sulfhydryl reacting reagents that have been applied in osmotic experiments showed similar effects on diffusional permeability. It was found that mercurials, including mersalyl, were the only sulfhydryl reacting reagents that were efficient inhibitors. Under optimal conditions a similar degree of inhibition (around 45%) was found with all mercury-containing sulfhydryl reagents. Other reagents, including the sulfhydryl reagent DTNB, phloretin, or H2DIDS, the specific inhibitor of the anion transport system in erythrocyte membrane, did not appear to inhibit significantly the diffusional permeability. No changes in water diffusion were noticed after exposure to erythrocytes to trypsin and chymotrypsin. A new kind of experiments was that in which the effects of exposure of erythrocytes to two or more agents were studied. It was found that none of the chemical manipulations of membranes that did not affect water diffusion hampered the inhibitory action of mercurials. These findings show that the SH groups involved in water diffusion across erythrocyte membrane do not react with any of the other SH reagents aside from mercurials and that the molecular mechanism of water transport is not affected by chymotryptic cleavage of band 3 protein into the 60 and 35 kD fragments. The NMR method appears as a useful tool for studying changes in water diffusion in erythrocyte membranes following various chemical manipulations of the membranes with the aim of locating the water channel.  相似文献   

2.
The water permeability of human erythrocytes has been monitored by nuclear magnetic resonance (NMR) before and after treatment of the cells with various sulfhydryl reagents. Preincubation of the cells with N-ethylmaleimide (NEM), a non-inhibitory sulfhydryl reagent, results in a faster and more sensitive inhibition of water exchange by mercurials. The inhibition of water exchange by p-chloromercuribenzene sulfonate (PCMBS) was maximal at a binding of approximately 10 nmol PCMBS per mg protein when non-specific sulfhydryl groups are blocked by NEM. Inhibition by PCMBS has been correlated with the binding of 203Hg to erythrocyte membrane proteins. A significant binding of label to band 3 and the polypeptides in band 4.5 occurs, with approximately 1 mol of mercurial bound per mol of protein. Inhibition of water transport by sulfhydryl reagents does not induce major morphological changes in the cells as assessed by freeze-fracture and scanning electron microscopy.  相似文献   

3.
A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, corresponding to a decreased exchange rate. However, the diffusional permeability of ghosts was not significantly different from that of erythrocytes . The changes in water diffusion following exposure to p-chloromercuribenzene sulfonate (PCMBS) have been studied on ghosts suspended in isotonic solutions. It was found that a significant inhibitory effect of PCMBS on water diffusion occurred only after several minutes of incubation at 37°C. No inhibition was noticed after short incubation at 0°C as previously used in some labelling experiments. This indicates the location in the membrane interior of the SH groups involved in water diffusion across human erythrocyte membranes. The nuclear magnetic resonance ( n . m . r . ) method appears as a useful tool for studying changes in water diffusiofl in erythrocyte ghosts with the aim of locating the water channel.  相似文献   

4.
The effects of p-chloromercuriphenylsulfonic acid (PCMBS), 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB), phloretin and thiourea on the diffusional permeability of dog erythrocytes to tritiated water and to small 14C-labeled lipophilic and hydrophilic solutes were measured at 37 degrees C by means of the linear diffusion technique. Permeability to 3HHO was significantly decreased by PCMBS but was not affected by the other reagents. The permeability to the small hydrophilic solutes acetamide and urea was decreased by phloretin and thiourea but only the permeability to acetamide was reduced to a statistically significant extent by PCMBS. The permeability to the lipophilic solutes methanol, ethanol and antipyrine was not affected by any of these agents. We interpret these results as an indication that the small lipophilic solutes probably move through lipid areas, that the small hydrophilic solutes probably move through protein associated areas in the erythrocyte membrane and that pathways for the small hydrophilic solutes are distinct from those for water. While the pathways for water may be associated with membrane protein they do not appear to be associated specifically with band 3 protein as has been suggested for human erythrocytes. Diffusional water movement through the dog erythrocyte occurs by two distinct pathways.  相似文献   

5.
Summary The water permeability of human red blood cell (RBC) membrane has been monitored by a doping nuclear magnetic resonance (NMR) technique on intact cells and resealed ghosts following exposure to various sulfydryl-reacting (SH) reagents and proteolytic enzymes. The main conclusions are the following: (i) When appropriate conditions for exposure of erythrocytes or ghosts to mercury-containing SH reagents (concentration, temperature and duration of incubation) were found, the maximal inhibition of water diffusion could be obtained with all mercurials (including HgCl2 and mersalyl that failed to show their inhibitory action on RBC water permeability in some investigations). While previous studies claimed that long incubation times are required for the development of maximal inhibition of water diffusion by mercurials, the present results show that it can be induced in a much shorter time (5–15 min at 37°C) if relatively high concentrations of PCMBS (2–4mm) are used and no washings of the inhibitor are performed after incubation. Higher than optimal concentrations of mercurials and/or longer incubation times result in lower values of inhibition, sometimes a loss of inhibition, or can even lead to higher values of permeability compared to control RBCs. (ii) The conditions for inhibition by mercurials are drastically changed by preincubation of erythrocytes with noninhibitory SH reagents (such as NEM or IAM) or by exposure to proteolytic enzymes. If the cells are digested with papain, the duration of incubation with PCMBS should be decreased in order for inhibition to occur. This explains the lack of inhibition reported previously, when a relatively long duration of incubation with PCMBS was used subsequent to papain digestion. (iii) The degree of inhibition of water diffusion induced by mercurials appeared to be dependent upon the temperature of which the water permeability was measured. The values of maximal inhibition ranged from 45–50% at 37°C, increased 10–15% at 20°C and further increased at lower temperatures, reaching values above 75% below 10°C; these results clarify the conflicting reports of various authors. (iv) The inhibition of water diffusion, either reversible, or irreversible, was not accompanied by significant changes in the pattern of RBC membrane polypeptides fractionated by polyacrylamide gel electrophoresis. (v) The mean value of the activation energy of water diffusion (E a,d) obtained on 42 donors was 25.6 kJ/mol. The values ofE a,d increased in parallel with the values of the inhibition of water diffusion induced by PCMBS until the maximal inhibition was reached (whenE a,d=41 kJ/mol) and then both sets of values decreased in parallel.  相似文献   

6.
The temperature-dependence of water diffusion across human erythrocyte membrane was studied on isolated erythrocytes and resealed ghosts by a doping nuclear magnetic resonance technique. The conclusions are the following: (1) The storage of suspended erythrocytes at 2 degrees C up to 24 h or at 37 degrees C for 30 min did not change the water exchange time significantly, even if Mn2+ was present in the medium. This indicates that no significant penetration of Mn2+ is taking place under such conditions. (2) In case of cells previously incubated at 37 degrees C for longer than 30 min with concentrations of p-chloromercuribenzene sulfonate (PCMBS) greater than 0.5 mM, the water-exchange time gradually decreased if the cells were stored in the presence of Mn2+ for more than 10 min at 37 degrees C. (3) When the Arrhenius plot of the water-exchange time was calculated on the basis of measurements performed in such a way as to avoid a prolonged exposure of erythrocytes to Mn2+ no discontinuity occurred, regardless of the treatment with PCMBS. (4) No significant differences between erythrocytes and resealed ghosts regarding their permeability and the activation energy of water diffusion (Ea,d) were noticed. The mean value of Ea,d obtained on erythrocytes from 35 donors was 24.5 kJ/mol. (5) The value of Ea,d increased after treatment with PCMBS, in parallel with the percentage inhibition of water diffusion. A mean value of 41.3 kJ/mol was obtained for Ea,d of erythrocytes incubated with 1 mM PCMBS for 60 min at 37 degrees C and 28.3 kJ/mol for ghosts incubated with 0.1 mM PCMBS for 15 min, the values of inhibition being 46% and 21% respectively.  相似文献   

7.
Extracellular chymotrypsin cleaves the 95 000 dalton protein that migrates in band 3 of SDS-polyacrylamide gel electropherograms of the erythrocyte membrane into fragments of 60 000 and 35 000 daltons, but not further. Minor components of band 3 that remain at the original 95 000 dalton location may be eluted from the membrane by 0.1 N NaOH, indicating that, in contrast to the major component and the chymotryptic fragments, they are not integral membrane constituents. Incubation at neutral pH of chymotrypsinized erythrocytes with the bifunctional anion transport inhibitor 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid results in covalent binding of that inhibitor primarily to the 60 000 dalton fragment and some cross-linking of the 60 000 dalton fragment with the 35 000 dalton fragment. Increasing the pH to 9.5 leads to a cross-linking of virtually all of the pairs of chymotryptic fragments and thus to a reconstitution of band 3 with its typical diffuse appearance in the 95 000 dalton region of the SDS-polyacrylamide gels. This indicates that (1) each integral 95 000 dalton protein molecule is capable of binding at least one 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid molecule; (2) the 35 000 dalton fragment, though it is only weakly stained with Coomassie blue, is present in an amount that is equimolar with that of the 60 000 dalton fragment. Since the number of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid binding sites on the protein in band 3/cell is known to be close to the number of band 3 molecules/cell, it is suggested that the cross-linking takes place at a region of the band 3 molecule that is involved in the control of anion transport, Like chymotrypsin, papain digests the band 3 protein from the outer membrane surface. Unlike chymotrypsin, however, papain digestion results in an inhibition of anion exchange. Papain produces a major fragment of 60 000 daltons that differs from the major chymotryptic fragment by at most six amino acid residues. The only detectable difference between the noninhibitory action of chymotrypsin and the inhibitory action of papain on the band 3 protein is that papain is capable of partially digesting the 35000 dalton fragment. No reconstitution of band 3 by cross-linking of the fragments with 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid can be achieved. Since the 35 000 dalton fragment reacts with one of the two reactive groups of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid and is also susceptible to digestion by the inhibitory papain, we suggest that a portion of this peptide participates, together with a portion of the 60 000 dalton fragment, in the control anion transport.  相似文献   

8.
Extracellular chymotrypsin cleaves the 95 000 dalton protein that migrates in band 3 of SDS-polyacrylamide gel electropherograms of the erythrocyte membrane into fragments of 60 000 and 35 000 daltons, but not further. Minor components of band 3 that remain at the original 95 000 dalton location may be eluted from the membrane by 0.1 N NaOH, indicating that, in contrast to the major component and the chymotryptic fragments, they are not integral membrane constituents.Incubation at neutral pH of chymotrypsinized erythrocytes with the bifunctional anion transport inhibitor 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid results in covalent binding of that inhibitor primarily to the 60 000 dalton fragment and some cross-linking of the 60 000 dalton fragment with the 35 000 dalton fragment. Increasing the pH to 9.5 leads to a crosslinking of virtually all of the pairs of chymotryptic fragments and thus to a reconstitution of band 3 with its typical diffuse appearance in the 95 000 dalton region of the SDS-polyacrylamide gels. This indicates that (1) each integral 95 000 dalton protein molecule is capable of binding at least one 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid molecule; (2) the 35 000 dalton fragment, though it is only weakly stained with Coomassie blue, is present in an amount that is equimolar with that of the 60 000 dalton fragment. Since the number of 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid binding sites on the protein in band 3/cell is known to be close to the number of band 3 molecules/cell, it is suggested that the cross-linking takes place at a region of the band 3 molecule that is involved in the control of anion transport.Like chymotrypsin, papain digests the band 3 protein from the outer membrane surface. Unlike chymotrypsin, however, papain digestion results in an inhibition of anion exchange. Papain produces a major fragment of 60 000 daltons that differs from the major chymotryptic fragment by at most six amino acid residues. The only detectable difference between the non-inhibitory action of chymotrypsin and the inhibitory action of papain on the band 3 protein is that papain is capable of partially digesting the 35000 dalton fragment. No reconstitution of band 3 by cross-linking of the fragments with 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid can be achieved. Since the 35 000 dalton fragment reacts with one of the two reactive groups of 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid and is also susceptible to digestion by the inhibitory papain, we suggest that a portion of this peptide participates, together with a portion of the 60 000 dalton fragment, in the control of anion transport.  相似文献   

9.
Upon exposure of human erythrocytes to a high pressure of 200 mPa, both hemolysis and vesiculation occur. The hemolysis of erythrocytes at 200 mPa was enhanced by removal of sialic acids from the membrane surface with papain. However, such enhancement was suppressed by cross-linking of band 3 via an anti-band 3 antibody (AB3A), which recognizes the exofacial domain of band 3, or by clustering of band 3 via Zn2+. On the other hand, the size of high-pressure-induced vesicles increased from 423 to 525 nm in diameter upon exposure to papain of erythrocytes, but decreased to 444 nm with following treatment with AB3A. In these vesicles, the content of spectrin relative to band 3 was almost the same. Furthermore, the band 3-cytoskeleton interactions in erythrocyte membranes remained unaltered upon treatment with papain and AB3A. Flow cytometric analysis demonstrated that papain-pretreated erythrocytes mainly produce open ghosts at 200 mPa and that the production of such open ghosts is suppressed by AB3A. Thus, upon removal of negative charges from the membrane surface, open ghosts are readily produced due to the release of larger vesicles under pressure. Upon cross-linking of band 3 via AB3A, however, the release of smaller vesicles at 200 mPa is facilitated so that high-pressure-induced hemolysis is suppressed.  相似文献   

10.
Human erythrocytes become agglutinable with concanavalin A (Con A) after treatment with various proteinases or neuraminidase. The extent of agglutinability achieved with different enzymes is, however, different: Pronase, papain, trypsin, neuraminidase and chymotrypsin enhance the agglutinability in decreasing order, the last being barely effective. The actions of the enzymes on band 3, the Con A receptor, do not correlate with their abilities to increase the agglutinability: Pronase, papain and chymotrypsin cleave the protein, but not trypsin or neuraminidase. No significant differences are found in the number of Con A-binding sites or the affinities for the lectin between the normal and trypsin- or Pronase-treated cells. Thus the receptor does not seem to play a role in determining the Con A-agglutinability of erythrocytes. On the other hand, the cleavage of glycophorins, especially glycophorin A, and the release of sialic acid (in the peptide-bound form) are well-correlated with the enhancement in agglutination after the action of proteinases. The release of sialic acid by graded neuraminidase digestion and the increase in Con A-agglutinability show a correlation coefficient of 0.88. The major inhibitory role of glycophorin A in the process is indicated by the agglutination of En(a) heterozygous erythrocytes; the cells, known to bear about 50% glycophorin A molecules in their membrane, are agglutinated approximately half as well without proteolysis as are the trypsin-treated cells. Possible mechanisms by which glycophorin A could affect Con A-mediated agglutination are discussed.  相似文献   

11.
C E Cobb  A H Beth 《Biochemistry》1990,29(36):8283-8290
The anion-exchange protein (band 3) reaction site in human erythrocytes for the fluorescent/phosphorescent probe eosinyl-5-maleimide (EMA) has been identified. Proteolytic dissection of band 3 in situ indicated that EMA reacts with the membrane-spanning Mr 17K peptide produced by chymotrypsin cleavage of band 3 in intact erythrocytes followed by removal of the cytoplasmic domain by mild trypsin digestion of ghost membranes. Sequencing of the major eosin-labeled peptide obtained from HPLC purification of an extensive chymotrypsin digest of purified Mr 17K peptide allowed assignment of the covalent reaction site for EMA to lysine-430 of the human erythrocyte protein [Tanner et al. (1988) Biochem. J. 256, 703-712]. Hydropathy plots based upon the primary structure of the protein [Lux et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9089-9093] suggest that this residue is in an extracellularly accessible loop connecting membrane-spanning segments 1 and 2 of native band 3 in the erythrocyte membrane. Inhibition of sequential labeling of intact erythrocytes by pairs of chemical probes including EMA, the anion transport inhibitor 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate (H2-DIDS), and the reactively bifunctional spin-label bis(sulfo-N-succinimidyl) doxyl-2-spiro-5'-azelate (BSSDA) has also been investigated. Each of these reagents affinity labels band 3 when added separately to a suspension of intact human erythrocytes by formation of one or more stable covalent bonds. Prelabeling of intact erythrocytes with EMA reduced subsequent labeling of band 3 by H2-DIDS by approximately 95% and by BSSDA by 90%. Similarly, prelabeling with H2-DIDS reduced subsequent labeling of band 3 by EMA by over 90%, and BSSDA prelabeling reduced EMA labeling by approximately 95%. Therefore, though having widely divergent chemical structures and protein modification reactivities, each of these negatively charged reagents may be competing for reaction with spatially overlapping sites on band 3 which are accessible from the extracellular space.  相似文献   

12.
Band 3, the erythrocyte anion transporter, has been shown to transfer between human erythrocytes and sonicated vesicles (Newton, A. C., Cook, S. L., and Huestis, W. H. (1983) Biochemistry 22, 6110-6117). Functional band 3 becomes associated with dimyristoylphosphatidylcholine vesicles incubated with human red blood cells. Proteolytic degradation patterns reveal that the transporter is transferred to the vesicles in native orientation. In erythrocytes, native band 3 is degraded on the exoplasmic membrane face by chymotrypsin and on the cytoplasmic surface by trypsin (Cabantchik, Z. I., and Rothstein, A. (1974) J. Membr. Biol. 15, 227-248; Jennings, M. L., Anderson, M. P., and Monaghan, R. (1986) J. Biol. Chem. 261, 9002-9010). Band 3 in intact protein-vesicle complexes is degraded by exogenous chymotrypsin but not by trypsin. In contrast, trypsin entrapped in the lumen of the vesicles proteolyses the vesicle-bound band 3 quantitatively. Band 3 remaining in the membranes of vesicle-treated cells and in cell fragments is not degraded detectably by vesicle-entrapped trypsin. These observations indicate that band 3 is unlikely to transfer between cell and vesicle membranes via a water-soluble form or to adhere nonspecifically to the vesicle surface; the aqueous contents of vesicles and cells (or membrane fragments) are not pooled during cell-vesicle incubations, hence no cell-vesicle fusion occurs; and the band 3 associated with the sonicated vesicle fraction is inserted in the vesicle bilayer in native orientation, with its cytoplasmic segment contacting the aqueous contents of the vesicle lumen.  相似文献   

13.
A 92,000 D protein was identified associated with the membrane of host erythrocytes infected with the FCB1 Plasmodium falciparum strain from Colombia. The same protein was identified in the knob-forming Gambian (and the Malayan Camp) strain, but was not present in all the corresponding knobless strains. In the FCB1 strain as well as in the FCR3 strain the protein is synthesized during the ring-stage period. The cleavage products of the 92,000 D protein were investigated by peptide mapping following limited proteolytic digestion with Staphylococcus aureus V8 protease. The 92,000 D protein cleavage products from both the Colombian and the Gambian strains were identical. Moreover, both the proteins were sensitive to trypsin and chymotrypsin and also to treatment with neuraminidase. Enzymatic removal of the protein from the erythrocyte membrane by trypsin or chymotrypsin did not affect parasite maturation. The merozoites thus produced were fully invasive and the morphology of the knobs was unaltered. When the erythrocyte membrane was treated with trypsin before the time of synthesis of the 92,000 D protein, it was not possible to identify the protein in membranes of later stages of infected erythrocytes, indicating that the protein cannot be inserted into the membrane cytoskeleton compartment. Knobs, however, were formed more or less normally, suggesting that it is not the accumulation of this protein which products the knobs.  相似文献   

14.
We have used a spin label analog of cholesterol bearing a nitroxide on the alkyl chain (26-nor-25-doxylcholestanol) to study cholesterol-protein interactions in the human erythrocyte membrane. As judged from the ESR spectrum, the spin label is readily incorporated into the membrane when added from a concentrated ethanolic solution to a cell or ghost suspension. With intact erythrocytes or white ghosts in isotonic buffer, the ESR spectrum is a superposition of a mobile component and a strongly immobilized component (outer hyperfine splitting 61–63 G). The latter corresponds to approx. 45% of the signal, a percentage which is barely affected by varying the temperature between 5 and 37°C. Removal of the cytoskeletal proteins spectrin and actin by low ionic strength treatment or of all extrinsic proteins by alkali treatment of ghosts reduces the immobilized fraction to approx. 25%. The effect of controlled proteolysis of intrinsic proteins was also tested. Pre-treatment of cells with chymotrypsin or pre-treatment of unsealed ghosts with trypsin has no effect on the ESR spectrum obtained with alkali-treated membranes. On the other hand, after chymotrypsin treatment of unsealed ghost, which reduces the band 3 protein to a 17.5 kDa membrane fragment, the strongly immobilized component is no longer observable. These data show that the cholesterol analog 26-nor-25-doxylcholestanol interacts strongly with one or several proteins of the erythrocyte membrane. That the intrinsic protein band 3 is involved is suggested by the disappearance of the immobilized fraction occurring upon chymotrypsin digestion of this protein. Our results are thus consistent with the proposal of a selective cholesterol-band 3 interaction in the erythrocyte membrane (Schubert, D. and Boss, K. (1982) FEBS Lett. 150, 4–8). Our data also suggest that this interaction is influenced by cytoskeletal proteins, an effect which can be explained considering the known linking of band 3 to the erythrocyte cytoskeleton via ankyrin. Experiments have also been carried out with 3-doxylandrostanol, a more commonly used cholesterol spin-label analog. With this spin label, at all temperatures investigated, we found it impossible to demonstrate unambiguously the existence of two separate spectral components. It is suggested that 26-nor-25-doxylcholestanol is a better reporter of cholesterol behavior in membranes.  相似文献   

15.
Summary Pulsed nuclear magnetic resonance spectroscopy is employed to determine the time dependence of the change in erythrocyte water permeability following exposure top-chloromercuribenzoate (PCMB) orp-chloromercuribenzene sulfonic acid (PCMBS). pH variation was used to examine the environment of the sulfhydryl groups reactive to these drugs. PCMB reacted with at least two sulfhydryl groups which affect water permeability. This was shown by the double exponential character of the change in erythrocyte diffusional permeability with time after PCMB addition. However, only one inhibition rate process could be distinguished following PCMBS exposure, suggesting that one site bound by PCMB is not accessible to PCMBS. This site is postulated to be located in a hydrophobic region of the membrane, whereas the site reached by both drugs is located in the normal anion permeation channel. The effect of pH on the degree of inhibition due to each component and the inhibition rates is explained in terms of its effect on solubility of the reagents in the membrane and variation of the dissociated-to-undissociated ratio of PCMB.  相似文献   

16.
The erythrocyte-binding antigen 140 (EBA140) sequence was chemically synthesized in 61 20-mer sequential peptides covering the entire 3D7 protein strain, each of which was tested in erythrocyte-binding assays. Peptides 26135, 26144, 26147, 26160, 26170 and 26177 presented high erythrocyte-binding activity, with affinity constants ranging from 350 to 750 nM. Critical erythrocyte-binding residues were determined by competition-binding assays with glycine analogous peptides. Cross-linking assays with SDS-PAGE from high erythrocyte membrane protein binding peptides showed that all these peptides bound specifically to 25, 52 and 75 kDa erythrocyte membrane proteins. The nature of these receptor sites was studied in peptide-binding assays using enzyme-treated erythrocytes, showing that these protein receptors are susceptible to structural changes provoked by enzyme treatment (neuraminidase, trypsin or chymotrypsin). Inhibition invasion assays in 'in vitro' cultures showed that all specific high binding sequences were able to inhibit invasion by 11-69% at 200 microM concentration.  相似文献   

17.
G Benga  O Popescu  V I Pop  R P Holmes 《Biochemistry》1986,25(7):1535-1538
The binding of [203Hg]-p-(chloromercuri)benzenesulfonate to the membrane proteins of human erythrocytes and erythrocyte ghosts was examined under conditions where binding to the bulk of membrane sulfhydryl groups was blocked by N-ethylmaleimide. Binding was essentially complete within 90 min when approximately 40 nmol was bound per milligram of membrane protein. This binding was correlated with the inhibition of water transport measured by an NMR technique. Maximal inhibition was observed with the binding of approximately 10 nmol of p-(chloromercuri)benzenesulfonate/mg of membrane protein. Under these conditions, both band 3 and band 4.5 bound 1 mol of inhibitor/mol of protein. In contrast to previous experiments, these results indicate that band 4.5 proteins as well as band 3 have to be considered as playing a role in water transport.  相似文献   

18.
During Plasmodium falciparum merozoite invasion into human and mouse erythrocytes, a 110-kDa rhoptry protein is secreted from the organelle into the erythrocyte membrane. In the present study our interest was to examine the interaction of rhoptry proteins of P. falciparum with the erythrocyte membrane. It was observed that the complex of rhoptry proteins of 140/130/110 kDa bind directly to a trypsin sensitive site on intact mouse erythrocytes, and not human, saimiri, or other erythrocytes. However, when erythrocytes were disrupted by hypotonic lysis, rhoptry proteins of 140/130/110 kDa were found to bind to membranes and inside-out vesicles prepared from human, mouse, saimiri, rhesus, rat, and rabbit erythrocytes. A binding site on the cytoplasmic face of the erythrocyte membrane suggests that the rhoptry proteins may be translocated across the lipid bilayer during merozoite invasion. Furthermore, pretreatment of human erythrocytes with a specific peptide derived from MSA-1, the major P. falciparum merozoite surface antigen of MW 190,000-200,000, induced binding of the 140/130/110-kDa complex. The rhoptry proteins bound equally to normal human erythrocytes and erythrocytes treated with neuraminidase, trypsin, and chymotrypsin indicating the binding site was independent of glycophorin and other major surface proteins. The rhoptry protein complex also bound specifically to liposomes prepared from different types of phospholipids. Liposomes containing PE effectively block binding of the rhoptry proteins to mouse cells, suggesting that there are two binding sites on the mouse membrane for the 140/130/110-kDa complex, one protein and a second, possibly lipid in nature. The results of this study suggest that the 140/130/110 kDa protein complex may interact directly with sites in the lipid bilayer of the erythrocyte membrane.  相似文献   

19.
The proteolysis of casein by trypsin, chymotrypsin and papain was inhibited by ripened and unripened bontha, poovan, nendran, cavendish and rasthali bananas. The inhibition of trypsin, chymotrypsin and papain by different ripened banana cultivars was much more than that of unripened banana cultivars. The trypsin and chymotrypsin inhibitory activity of ripened poovan was heat stable, resistant to pronase and partly stable to trypsin but the trypsin and chymotrypsin inhibitory activity of unripened poovan was stable to heat and resistant to pronase only. The partial stability of trypsin inhibitory activity and instability of papain inhibitory activity of ripened poovan to alkaline pH suggests that the inhibitory factors of trypsin and papain were dissimilar. The probable role of unripened banana papain inhibitors in curing stomach ulcers and antinutritional role of ripened banana trypsin inhibitors is discussed.  相似文献   

20.
Receptor-ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine Plasmodium falciparum merozoite surface protein-3 (MSP-3) FC27 strain regions that specifically bind to membrane surface receptors on human erythrocytes. Three MSP-3 protein high activity binding peptides (HABPs) were identified; their binding to erythrocytes became saturable, had nanomolar affinity constants, and became sensitive on being treated with neuraminidase and trypsin but were resistant to chymotrypsin treatment. All of them specifically recognized 45-, 55-, and 72-kDa erythrocyte membrane proteins. They all presented alpha-helix structural elements. All HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by ~55%-85%, suggesting that MSP-3 protein's role in the invasion process probably functions by using mechanisms similar to those described for other MSP family antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号