首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and AimsThe C4Urochloa species (syn. Brachiaria) and Megathyrsus maximus (syn. Panicum maximum) are used as pasture for cattle across vast areas in tropical agriculture systems in Africa and South America. A key target for variety improvement is forage quality: enhanced digestibility could decrease the amount of land required per unit production, and enhanced lipid content could decrease methane emissions from cattle. For these traits, loss-of-function (LOF) alleles in known gene targets are predicted to improve them, making a reverse genetics approach of allele mining feasible. We therefore set out to look for such alleles in diverse accessions of Urochloa species and Megathyrsus maximus from the genebank collection held at the CIAT.MethodsWe studied allelic diversity of 20 target genes (11 for digestibility, nine for lipid content) in 104 accessions selected to represent genetic diversity and ploidy levels of U. brizantha, U. decumbens, U. humidicola, U. ruziziensis and M. maximum. We used RNA sequencing and then bait capture DNA sequencing to improve gene models in a U. ruziziensis reference genome to assign polymorphisms with high confidence.Key ResultsWe found 953 non-synonymous polymorphisms across all genes and accessions; within these, we identified seven putative LOF alleles with high confidence, including those in the non-redundant SDP1 and BAHD01 genes present in diploid and tetraploid accessions. These LOF alleles could respectively confer increased lipid content and digestibility if incorporated into a breeding programme.ConclusionsWe demonstrated a novel, effective approach to allele discovery in diverse accessions using a draft reference genome from a single species. We used this to find gene variants in a collection of tropical grasses that could help reduce the environmental impact of cattle production.  相似文献   

2.

Background

Urochloa humidicola is a forage grass that grows in tropical regions and is recognized for its tolerance to seasonal flooding. It is a polyploid and apomictic species with high phenotypic plasticity. As molecular tools are important in facilitating the development of new cultivars and in the classification of related species, the objectives of this study were to develop new polymorphic microsatellite markers from an enriched library constructed from U. humidicola and to evaluate their transferability to other Urochloa species.

Findings

Microsatellite sequences were identified from a previously constructed enriched library, and specific primers were designed for 40 loci. Isolated di-nucleotide repeat motifs were the most abundant followed by tetra-nucleotide repeats. Of the tested loci, 38 displayed polymorphism when screened across 34 polyploid Urochloa sp. genotypes, including 20 accessions and six hybrids of U. humidicola and two accessions each from U. brizantha, U. dictyoneura, U. decumbens and U. ruziziensis. The number of bands per Simple Sequence Repeat (SSR) locus ranged from one to 29 with a mean of 11.5 bands per locus. The mean Polymorphism Information Content (PIC) of all loci was 0.7136, and the mean Discrimination Power (DP) was 0.7873. Six loci amplified in all species tested. STRUCTURE analysis revealed six different allelic pools, and the genetic similarity values analyzed using Jaccard's coefficient ranged from 0.000 to 0.913.

Conclusions

This work reports new polymorphic microsatellite markers that will be useful for breeding programs for Urochloa humidicola and other Urochloa species as well as for genetic map development, germplasm characterization, evolutionary and taxonomic studies and marker-assisted trait selection.
  相似文献   

3.

The genus Urochloa P. Beauv. [syn. Brachiaria (Trin.) Griseb.] comprises species of great economic relevance as forages. The genomic constitution for the allotetraploid species Urochloa brizantha (cv. Marandu) and Urochloa decumbens (cv. Basilisk) and the diploid Urochloa ruziziensis was previously proposed as BBB1B1, B1B1B2B2 and B2B2, respectively. Evidence indicates U. ruziziensis as the ancestral donor of genome B2 in U. decumbens allotetraploidy, but the origin of the genomes B and B1 is still unknown. There are diploid genotypes of U. brizantha and U. decumbens that may be potential ancestors of the tetraploids. The aim of this study was to determine the genomic constitution and relationships between genotypes of U. brizantha (2x and 4x), U. decumbens (2x and 4x) and U. ruziziensis (2x) via genomic in situ hybridization (GISH). Additionally, chromosome number and genome size were verified for the diploid genotypes. The diploids U. brizantha and U. decumbens presented 2n?=?2x?=?18 chromosomes and DNA content of 1.79 and 1.44 pg, respectively. The GISH analysis revealed high homology between the diploids U. brizantha and U. decumbens, which suggests relatively short divergence time. The GISH using genomic probes from the diploid accessions on the tetraploid accessions’ chromosomes presented similar patterns, highlighting the genome B1 present in both of the tetraploids. Based on GISH results, the genomic constitution was proposed for the diploid genotypes of U. brizantha (B1B1) and U. decumbens (B1′B1′) and both were pointed as donors of genome B1 (or B1′), present in the allotetraploid genotypes.

  相似文献   

4.
Brachiaria (Trin.) Griseb belongs to the family Poaceae, and within the genus, apomixis or sexuality is present in different accessions of the same species. The majority of Brachiaria species are polyploid and apomictic, making strategies for crop improvement by breeding very intricate. In spite of the high frequency of apomictic polyploids, the relationship of polyploidy and hybridization with apomixis in Brachiaria is still unclear. Further analysis requires detailed knowledge regarding the genomic composition of the polyploids. The present work introduces the use of fluorescent in situ hybridization (FISH) into cytogenetic analysis of Brachiaria. Physical mapping of heterologous rDNA sequences, associated with conventional karyotyping of the B. brizantha diploid sexual (BRA 002747) and the tetraploid apomictic (BRA000591) accessions, provided evidence of the latter being of allopolyploid origin. Based on our results and on previous knowledge on apomixis in B. brizantha, we suggest that the origin of apomixis was probably a consequence of hybridization.  相似文献   

5.
Brachiaria are increasingly cropped in the tropics because these species combine good fodder quality and yield with high resistance to aluminum (Al) toxicity, an important stress factor in acidic soils. The mechanisms for the extraordinarily high resistance to Al toxicity in Brachiaria decumbens remain unclear. It has been suggested that the presence of a multiseriate exodermis might contribute to efficient Al exclusion in B. decumbens. However, no data concerning the root structure of less Al-resistant Brachiaria species have been reported. The aim of the present study was determine whether the exodermis is a distinctive feature of Al hyper-resistant B. decumbens compared with Brachiaria species with lower Al resistance. B. decumbens, B. brizantha, and B. ruziziensis were grown in nutrient solution without (control) or with 200 μM Al (32 μM Al3+ activity) for 96 h. Differences in the Al resistance were assessed using various indicators: Al-induced inhibition of root elongation, membrane damage, and the maintenance of nutrient homeostasis. Transversal root sections were examined using fluorescence microscopy to reveal the presence of an exodermis through auto-fluorescence. Aluminum resistance decreased in the order B. decumbens > B. brizantha > B. ruziziensis. Both the hyper-resistant B. decumbens and the moderately resistant B. brizantha were more efficient in Al-exclusion than the sensitive B. ruziziensis. Apoplastic barriers, in the form of a multiseriate exodermis, were constitutively present in B. decumbens, but not in Al-sensitive B. ruziziensis. Under control conditions, B. brizantha exhibited slightly auto-fluorescent epidermal cell walls, while under Al exposure auto-fluorescent deposits were observed in the intercellular spaces between the epidermal and sub-epidermal cell layers. The results provide circumstantial evidence of a role for apoplastic barriers in the Al resistance of B. decumbens and, to a lesser extent, in B. brizantha. Nonetheless, additional research is required to determine a causal relationship between the exodermal barrier and Al resistance.  相似文献   

6.

The genus Urochloa P. Beauv. presents a prominent role in the tropical agricultural scenario being composed of species with different ploidy levels. Studies on the genomic relationship within this genus as well as specific analysis involving epigenetic marks are limited. The aim of the present study was to identify the cytosine methylation (5-mCyt) and histone H3 lysine 9 dimethylation (H3k9me2) in the different modulations of 45S ribosomal DNA (rDNA) sites in interphase nuclei and to associate these results with gene expression analysis in Urochloa ruziziensis (2n = 4x = 36), Urochloa brizantha cv. Marandu (2n = 4x = 36), and their respective interspecific hybrid H1863 (2n = 4x = 36). Immunolocalization techniques were performed in combination with Fluorescence in situ hybridization (FISH) for the location of the 45S rDNA sites. Predominantly, we observed intra- and perinucleolar sites, mostly hypomethylated and/or hyper/hypomethylated, decondensed or partially condensed. The gene expression analysis was performed qualitatively through the conventional PCR using complementary DNA and confirmed by the RT-qPCR technique and primers designed for the ITS-1 region of U. brizantha and U. ruziziensis. The molecular analyses performed on leaves showed that there is dominance of U. brizantha 45S rDNA gene expression on U. ruziziensis in the H1863 hybrid. In roots, the analyses showed that the 45S rDNA genes of the two parents are expressed in the hybrid genome. Thus, it is plausible to infer a tissue-specific nuclear dominance model in which the pattern of hypermethylated cytosine sites with heterochromatic marks and, therefore, silenced were mostly inherited from U. ruziziensis, whereas the rDNA originated from U. brizantha was characterized by cytosine and H3k9 hypomethylation.

  相似文献   

7.

Key message

Assessment of chromosomal distribution of modified histones and 5-methylcytosine shown that there are diversification of chromosomal types among species of Brachiaria and its interspecific hybrids.

Abstract

Histone post-translational modifications and DNA methylation are epigenetic processes that are involved in structural and functional organization of the genome. This study compared the chromosomal distribution of modified histones and 5-methylcytosine (5-mCyt) in species and interspecific hybrids of Brachiaria with different ploidy levels and reproduction modes. The relation between H3K9me2 and 5-mCyt was observed in the nucleolus organizer region, centromeric central domain and pericentromeric region. H3K4me2 was detected in euchromatic domains, mainly in the terminal chromosomal regions. Comparison of chromosomal distribution among species and hybrids showed greater variation of chromosomal types for the H3K9me2 in B. decumbens (tetraploid and apomictic species) and the 963 hybrid, while, for the H3K4me2, the variation was higher in B. brizantha and B. decumbens (tetraploid and apomictic species) and 963 hybrid. The chromosome distribution of 5-mCyt was similar between B. brizantha and B. decumbens, which differ from the distribution observed in B. ruziziensis (diploid and sexual species). Significant alterations in DNA methylation were observed in the artificially tetraploidized B. ruziziensis and in the interspecific hybrids, possibly as result of hybridization and polyploidization processes. The monitoring of histone modifications and DNA methylation allowed categorizing nuclear and chromosomal distribution of these epigenetic marks, thus contributing to the knowledge of composition and structure of the genome/epigenome of Brachiaria species and hybrids. These data can be useful for speciation and genome evolution studies in genus Brachiaria, and represent important markers to explore relationships between genomes.
  相似文献   

8.
The African species Urochloa humidicola (Rendle) Morrone & Zuloaga (syn. Brachiaria humidicola (Rendle) Schweick.) is an important perennial forage grass found throughout the tropics. This species is polyploid, ranging from tetra to nonaploid, and apomictic, which makes genetic studies challenging; therefore, the number of currently available genetic resources is limited. The genomic architecture and evolution of U. humidicola and the molecular markers linked to apomixis were investigated in a full-sib F1 population obtained by crossing the sexual accession H031 and the apomictic cultivar U. humidicola cv. BRS Tupi, both of which are hexaploid. A simple sequence repeat (SSR)-based linkage map was constructed for the species from 102 polymorphic and specific SSR markers based on simplex and double-simplex markers. The map consisted of 49 linkage groups (LGs) and had a total length of 1702.82 cM, with 89 microsatellite loci and an average map density of 10.6 cM. Eight homology groups (HGs) were formed, comprising 22 LGs, and the other LGs remained ungrouped. The locus that controls apospory (apo-locus) was mapped in LG02 and was located 19.4 cM from the locus Bh027.c.D2. In the cytological analyses of some hybrids, bi- to hexavalents at diakinesis were observed, as well as two nucleoli in some meiocytes, smaller chromosomes with preferential allocation within the first metaphase plate and asynchronous chromosome migration to the poles during anaphase. The linkage map and the meiocyte analyses confirm previous reports of hybridization and suggest an allopolyploid origin of the hexaploid U. humidicola. This is the first linkage map of an Urochloa species, and it will be useful for future quantitative trait locus (QTL) analysis after saturation of the map and for genome assembly and evolutionary studies in Urochloa spp. Moreover, the results of the apomixis mapping are consistent with previous reports and confirm the need for additional studies to search for a co-segregating marker.  相似文献   

9.
Guenni  Orlando  Marín  Douglas  Baruch  Zdravko 《Plant and Soil》2002,243(2):229-241
The introduction of African grasses in Neotropical savannas has been a key factor to improve pasture productivity. We compared the response of five Brachiaria species to controlled drought (DT) in terms of biomass yield and allocation, pattern of root distribution, plant water use, leaf growth, nutrient concentration and dry matter digestibility. The perennial C4 forage grasses studied were B. brizantha (CIAT 6780), B. decumbens (CIAT 606), B. dictyoneura (CIAT 6133), B. humidicola (CIAT 679) and B. mutica. Two DT periods, which mimic short dry spells frequent in the rainy season, were imposed by suspending irrigation until wilting symptoms appeared. They appeared after 14 days in B. brizantha, B. decumbens and B. mutica, and after 28 days in B. humidicola and B. dictyoneura. The impossed drought stress was mild and only the largest grass, B. brizantha, showed reduced (23%) plant yield. The other grasses were able to adjust growth and biomass allocation in response to DT leaving total plant yield relatively unaffected. Brachiaria mutica, had a homogeneous root distribution throughout the soil profile. In the other species more than 80% of root biomass was allocated within the first 30 cm of the soil profile. Brachiaria brizantha and B. decumbens had the lowest proportion of roots below 50 cm. Drought caused a general reduction in root biomass. The shoot:root ratio in B. mutica and B. humidicola increased in response to DT at the expense of a reduction in root yield down to 50 cm depth. Although the total water volume utilized under DT was similar among grasses, the rate of water use was highest (0.25 l day–1) in B. brizantha, B. decumbens and B. mutica and lowest (0.13 l day–1) in B. humidicola and B. dictyoneura. In all species leaf expansion was reduced by DT but it was rapidly reassumed after rewatering. Drought increased specific leaf mass (SLM) only in B. brizantha compensating for leaf area reduction, but leaf area ratio (LAR) was unaffected in all species. In almost all grasses DT increased leaf N and K concentration and in vitro dry matter digestibility. The results indicate that B. brizantha, B. decumbens and to a lesser extent, B. mutica are better adapted to short dry periods, whereas B. humidicola and B. dictyoneura are better adapted to longer dry periods.  相似文献   

10.

Background and Aims

Intraspecific reproductive differentiation into sexual and apomictic cytotypes of differing ploidy is a common phenomenon. However, mechanisms enabling the maintenance of both reproductive modes and integrity of cytotypes in sympatry are as yet poorly understood. This study examined the association of sexual and apomictic seed formation with ploidy as well as gene flow towards sexuals within populations of purely polyploid Potentilla puberula.

Methods

The study is based on 22 populations representing various combinations of five polyploid cytotypes (tetraploid–octoploid) from East Tyrol, Austria. Embryo ploidy and the endosperm/embryo ploidy ratio obtained by a flow cytometric seed screen were used to infer reproductive modes of seed formation and to calculate the male and female genomic contributions to the embryo and endosperm. Self-incompatibility (SI) patterns were assessed and a new indirect approach was used to test for the occurrence of intercytotype matings based on the variation in the male genomic contribution to sexually derived embryos on the level of developed seed.

Key Results

Tetraploids formed seeds almost exclusively via sexual reproduction, whereas penta- to octoploids were preferentially apomictic. Non-random distribution of reproductive modes within maternal plants further revealed a tendency to separate the sexual from the apomictic mode among individuals. Self-incompatibility of sexuals indicated functionality of the gametophytic SI system despite tetraploidy of the nuclear genome. We found no indication for significant cross-fertilization of tetraploids by the high polyploids.

Conclusions

The study revealed a rare example of intraspecific differentiation into sexual and apomictic cytotypes at the polyploid level. The integrity of the sexual tetraploids was maintained due to reproductive isolation from the apomictic higher polyploids. Functionality of the gametophytic SI system suggested that the tetraploids are functional diploids.  相似文献   

11.
Guenni  Orlando  Baruch  Zdravko  Marín  Douglas 《Plant and Soil》2004,258(1):249-260
Neotropical savannas are exposed to recurrent dry periods of varied duration, and forage grasses must be able to cope with such temporal stresses to maintain productive pastures. This study compared leaf water relations and net photosynthesis under drought of five perennial Brachiaria species: the tufted B. brizantha (CIAT 6780), the semi-stoloniferous B. decumbens (CIAT 606) and B. mutica, and the stoloniferous B. humidicola (CIAT 679) and B. dictyoneura (CIAT 6133). Plants of the five grasses were grown in large pots and subjected to drought by suspending watering until first wilting symptoms (14 days for B. brizantha, B. decumbens and B. mutica, and 29 days for B. humidicola and B. dictyoneura). Afterwards, they were re-watered and a second soil dry cycle was imposed. Time trends in leaf water potential (l), relative water content (RWC), osmotic potential at full turgor (0 100), stomatal conductance (Gs) and net photosynthesis (A) of stressed (DT) plants were compared to those of well-irrigated (CT) plants. Predawn l in DT plants decreased to a minimum of –1.5 and –2.0 MPa in B. brizantha and B. mutica, compared to –2.5 to –3.0 MPa in B. decumbens, B. humidicola and B. dictyoneura. RWC decreased up to 50% in B. brizantha, compared to 75% in the other species. In B. humidicola, B. dictyoneura and in a lesser extent, B. decumbens, leaves of DT plants adjusted osmotically, by an apparent accumulation of nutrient solutes, at a rather constant ratio of turgid to dry weight of the tissue. Calculated osmotic adjustment ranged between 0.38 (B. decumbens) to 0.87 MPa (B. humidicola). This adjustment in 0 100 was in some cases maintained 7 days after re-watering. In B. brizantha and B. mutica, Gs and A were significantly affected by drought, with maximum reduction percentages at the second drought period of 65 and 80%, respectively. The corresponding reduction in B. decumbens was 53 and 55%, respectively; whereas in B. humidicola and B. dictyoneura Gs and A were reduced less than 20%. In all species, re-watering allowed for the water relations (except 0 100) and photosynthetic activity of leaves of DT plants to reach values comparable to those of CT plants. Results are discussed in term of root morphology and soil water extraction pattern, as well as leaf traits that may contribute to withstand drought under moderate soil water stress.  相似文献   

12.
It is generally accepted that polyploids have downsized basic genomes rather than additive values with respect to their related diploids. Changes in genome size have been reported in correlation with several biological characteristics. About 75 % of around 350 species recognized for Paspalum (Poaceae) are polyploid and most polyploids are apomictic. Multiploid species are common with most of them bearing sexual diploid and apomictic tetraploid or other ploidy levels. DNA content in the embryo and the endosperm was measured by flow cytometry in a seed-by-seed analysis of 47 species including 77 different entities. The relative DNA content of the embryo informed the genome size of the accession while the embryo:endosperm ratio of DNA content revealed its reproductive mode. The genome sizes (2C-value) varied from 0.5 to 6.5 pg and for 29 species were measured for the first time. Flow cytometry provided new information on the reproductive mode for 12 species and one botanical variety and supplied new data for 10 species concerning cytotypes reported for the first time. There was no significant difference between the mean basic genome sizes (1Cx-values) of 32 sexual and 45 apomictic entities. Seventeen entities were diploid and 60 were polyploids with different degrees. There were no clear patterns of changes in 1Cx-values due to polyploidy or reproductive systems, and the existing variations are in concordance with subgeneric taxonomical grouping.  相似文献   

13.
A total of 44 accessions of Brachiaria decumbens were analysed for chromosome count and meiotic behaviour in order to identify potential progenitors for crosses. Among them, 15 accessions presented 2n = 18; 27 accessions, 2n = 36; and 2 accessions, 2n = 45 chromosomes. Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness and abnormal cytokinesis were observed in low frequency. All abnormalities can compromise pollen viability by generating unbalanced gametes. Based on the chromosome number and meiotic stability, the present study indicates the apomictic tetraploid accessions that can act as male genitor to produce interspecific hybrids with B. ruziziensis or intraspecific hybrids with recently artificially tetraploidized accessions.  相似文献   

14.
Global climate changes and biological invasions are environmental disturbances that may interact synergistically, causing loss of biodiversity. As the early stages of development are the most sensitive and easily affected by these constraints, this study investigated the effects of increased carbon dioxide (CO2) and temperature, as forecasted for 2100, on seed germination and early development of three species of invasive African grasses that have gradually replaced landscapes of the Brazilian Cerrado biome. It was observed that these parameters affected percentage and rate of germination in Urochloa brizantha, rate of germination and mean germination time in Urochloa decumbens and accelerated autotrophy acquisition in U. brizantha, U. decumbens and Megathyrsus maximus. Regarding root elongation, all species showed changes in total length, absolute and relative growth rate, but at different stages of development or time intervals, with increased temperature being more significant than increased CO2, probably due to seed reserves still being the main carbon sources at this stage. Taken together, the results indicate that the effects of CO2 and increased temperature are species specific and highlight the greatest potential of U. brizantha to germinate, and of U. decumbens for seedling establishment under these environmental changes.  相似文献   

15.
Apomixis is the ability of plants to produce asexual seeds, which are clones of the mother plant. The phenomenon of apomixis is tightly linked to ploidy, where diploids lack apomixis and reproduce sexually, while higher ploidy levels can exhibit apomixis. Taraxacum F.H.Wigg. species (dandelions) commonly exhibit apomixis; however, only limited studies have evaluated genome size variation of the iconic weedy dandelion, Taraxacum officinale F.H.Wigg. (common dandelion), particularly in North America. To evaluate the ploidy and reproductive biology of common dandelion, we created a global collection, with an emphasis on North America and determined genome size by evaluating seeds with flow cytometry. A total of 635 accessions were screened, and with the exception of two accessions from Germany and Austria, all were found to exclusively contain polyploid seed. The mode of reproduction of a sample of 96 of these accessions was observed by conducting emasculations. Our results indicate that the diploid, sexual cytotype of common dandelion may be absent in North America, while diploids were found in previously described areas of Central Europe. This suggests that the clonal lineages of common dandelion in North America may largely be derivative from apomictic plants introduced from abroad. Furthermore, if all North American common dandelion is apomictic, it may be unreceptive to pollen, which may isolate it from other dandelion species and inform the potential for gene flow.  相似文献   

16.
Aluminum toxicity on root systems was analyzed through comparing root growth and evaluating the protective function of mucilage in Urochloa decumbens and Urochloa brizantha. Seedlings were grown in a solution with different concentrations of AlCl3 and with mucilage removed or present. The root elongation rate, total length, number of roots and presence of aluminum at the root apex were measured. Root development was inhibited by aluminum and the elongation rate was maintained without any difference between the two species. A significant reduction in root length was found in U. brizantha. Aluminum did not influence root branching in either species and accumulated mostly in the rhizosphere of U. brizantha, where the mucilage has less of a protective function. The greatest aluminum tolerance was found in U. decumbens, observed through maintenance of total root system growth from lower to higher aluminum toxicity.  相似文献   

17.
The alpine white-flowered buttercup, Ranunculus kuepferi Greuter & Burdet, is a polyploid complex with diploids endemic to the southwestern Alps and polyploids – which have been previously described as apomictic – widespread throughout European mountains. Due to the polymorphic status of both its ploidy level and its reproductive mode, R. kuepferi represents a key species for understanding the evolution of polyploid lineages in alpine habitats. To disentangle the phylogeography of this polyploid taxon, we used cpDNA sequences and AFLP (amplified fragment length polymorphism) markers in 33 populations of R. kuepferi representative of its ploidy level and distribution area. Polyploid individuals were shown to be the result of at least two polyploidization events that may have taken place in the southwestern Alps. From this region, one single main migration of tetraploids colonized the entire Alpine range, the Apennines and Corsica. Genetic recombination among tetraploids was also observed, revealing the facultative nature of the apomictic reproductive mode in R. kuepferi polyploids. Our study shows the contrasting role played by diploid lineages mostly restricted to persistent refugia and by tetraploids, whose dispersal abilities have permitted their range extension all over the previously glaciated Alpine area and throughout neighbouring mountain massifs.  相似文献   

18.
Brachiaria, a genus of forage grasses of African origin, is gaining considerable importance because of both its nutritional value and its high stress resistance. An extraordinary resistance to Al toxicity has been reported in B. decumbens. The mechanisms of this hyperresistance are still unknown. This study explores the localization of Al in two contrasting Brachiaria species, the hyperresistant B. decumbens and the less resistant B. brizantha. Scanning Electron Microscope/Energy Dispersive Spectrometry, confocal fluorescence microscopy and optical microscopy of lumogallion or morin-stained roots was performed. Species differences in Al resistance were evident at 32 μM Al3+ activity in low ionic strength full nutrient solution containing Si. Roots of B. decumbens accumulated less Al than those of B. brizantha. Moreover, location and Al form seemed different. In B. decumbens Al accumulation was localized in hot spots of high Al concentrations. These sites with high Al accumulation mainly correspond to root hairs. B. brizantha exhibited a more even distribution of Al in cell walls of the root tip. Analysis of soluble phenolic substances in roots revealed species differences in response to Al. An Al-induced increase of chlorogenic acid concentrations was found in B. decumbens but not in B. brizantha. Taken together the results suggest a possible role for chlorogenic acid as a primer for changes in root epidermal cell patterning that may contribute to the Al hyperresistance in B. decumbens.  相似文献   

19.
Deciphering species relationships and hybrid origins in polyploid agamic species complexes is notoriously difficult. In this study of cheilanthoid ferns, we demonstrate increased resolving power for clarifying the origins of polyploid lineages by integrating evidence from a diverse selection of biosystematic methods. The prevalence of polyploidy, hybridization, and apomixis in ferns suggests that these processes play a significant role in their evolution and diversification. Using a combination of systematic approaches, we investigated the origins of apomictic polyploids belonging to the Cheilanthes yavapensis complex. Spore studies allowed us to assess ploidy levels; plastid and nuclear DNA sequencing revealed evolutionary relationships and confirmed the putative progenitors (both maternal and paternal) of taxa of hybrid origin; enzyme electrophoretic evidence provided information on genome dosage in allopolyploids. We find here that the widespread apomictic triploid, Cheilanthes lindheimeri, is an autopolyploid derived from a rare, previously undetected sexual diploid. The apomictic triploid Cheilanthes wootonii is shown to be an interspecific hybrid between C. fendleri and C. lindheimeri, whereas the apomictic tetraploid C. yavapensis is comprised of two cryptic and geographically distinct lineages. We show that earlier morphology-based hypotheses of species relationships, while not altogether incorrect, only partially explain the complicated evolutionary history of these ferns.  相似文献   

20.
The effect of maternal, facultatively apomictic plants on population diversity was evaluated in seven hybridizing polyploid Pilosella populations, where apomictic (P. bauhini or P. aurantiaca) and sexual (P. officinarum) biotypes coexist. The ploidy level, reproductive system, morphology, clonal structure and chloroplast DNA haplotypes were used to characterize these plants and their hybrids. The reproductive origins of the progeny were assessed through either a flow cytometric seed screen and/or a comparison between the ploidy level of progeny embryos/seedlings and the maternal ploidy level. The cultivated progeny derived from residual sexuality in maternal apomicts were also identified based on their morphology and reproductive behaviour. The progeny different from their maternal parents (0.6?92.3 % of progeny embryos and 0?100 % of progeny seedlings) originated either sexually or via haploid parthenogenesis. Comparing the facultatively apomictic and sexual mothers, the progeny arrays generated in the field showed that apomictic mothers produce progeny that is more variable in ploidy level. This effect was demonstrated at both the embryonic and seedling stages of progeny development. Residual sexuality in apomicts was also effective in experimental crosses, generating progeny similar to spontaneous hybrids in the field. The 2n + n hybrids produced from an apomictic and a sexual parent displayed similar reproductive behaviour, producing polyhaploid, sexual and apomictic progeny in variable ratios. Repeated hybridizations between parental species and/or multi-step crosses can result in hybrid swarms rich in cytotypes and morphotypes. The variation recorded in these populations suggests prevailing introgressive hybridization towards the sexual species P. officinarum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号