首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Microbial biomass and community structure of methanogenic anaerobic biomass reactors can be quantitatively monitored by signature, lipid analysis. The eubacterial and eukaryotic polar lipid fatty acids and the methanogen polar lipid ethers are reliable measures of their respective biomasses. The pattern of polar lipid fatty acids yields information on the community structure and metabolic state of the eubacteria and eukaryotes. These biomarker methods were applied over a 2-day feeding cycle of a highly productive batch-fed high-solids anaerobic biomass reactor. It was sampled before feeding, 6 h after feeding (disturbed)., at maximum gas production (healthy, 24 h), and after feedstock utilization (starved, 48h). Relative to the healthy condition, the disturbance of feeding significantly decreased eubacterial biomass and the proportion of unsaturated fatty acids, and increased branched fatty acids and the eubacterial stress biomarker,trans/cis 16: 17. The starved condition was not significantly different from the healthy in biomass or proportions of fatty acids, but did show a significant increase in the proportion of the eubacterial stress biomarkertrans/cis 18: 17. This reactor was compared to a second of the same design which had been overfed and showed significantly less productivity. The overfed reactor had a significantly lower methanogenic biomass,iso-branched fatty acids, and higher eubacterial stress markers Cy17:0 andtrans/cis 18: 17 than the highly productive reactor.  相似文献   

2.
D Finley  E Ozkaynak  A Varshavsky 《Cell》1987,48(6):1035-1046
Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in eukaryotes. In the yeast Saccharomyces cerevisiae, four distinct ubiquitin-coding loci have been described. UBI1, UBI2, and UBI3 each encode hybrid proteins in which ubiquitin is fused to unrelated sequences. The fourth gene, UBI4, contains five ubiquitin-coding elements in a head-to-tail arrangement, and thus encodes a polyubiquitin precursor protein. A precise, oligonucleotide-directed deletion of UBI4 was constructed in vitro and substituted in the yeast genome in place of the wild-type allele. ubi4 deletion mutants are viable as vegetative cells, grow at wild-type rates, and contain wild-type levels of free ubiquitin under exponential growth conditions. However, although ubi4/UBI4 diploids can form four initially viable spores, the two ubi4 spores within the ascus lose viability extremely rapidly, apparently a novel phenotype in yeast. Furthermore, ubi4/ubi4 diploids are sporulation-defective. ubi4 mutants are also hypersensitive to high temperatures, starvation, and amino acid analogs. These three conditions, while diverse in nature, are all known to induce stress proteins. Expression of the UBI4 gene is similarly induced by either heat stress or starvation. These results indicate that UBI4 is specifically required for the resistance of cells to stress, and that ubiquitin is an essential component of the stress response system.  相似文献   

3.
The application of safe and cheap inducers is important in the field of fermentation technology, which persuades employing new expression systems. In this study, a Bacillus subtilis expression system was induced by applying starvation and environmental stresses to produce xylanase. The expression plasmid harbors SigB-dependent ohrB promoter. The target gene was expressed by inoculating the recombinant strain into glucose-limited synthetic medium resulting in a sharp increase of xylanase activity at the end of logarithmic growth phase. The recombinant strain was able to express the xylanase enzyme 14-fold higher than that of the control one. The induction was also performed by exposing the recombinant strain to NaCl and ethanol stresses, and heat shock; the strain growing in LB showed 5-, 15- and 6-fold increases in xylanase activity, respectively. The best induction using environmental stresses was achieved by applying the salt stress in the synthetic medium. The maximum expression for NaCl and ethanol stresses occurred after 40 min of induction. All observed inductions were related to activation of SigB protein causing expression of the SigB-dependent xylanase gene. This SigB-dependent expression system can be considered as a biotechnology tool and an alternative to eliminate the cost of conventional inducers.  相似文献   

4.
5.
6.
Targets of rapamycin (TORs) are conserved phosphatidylinositol kinase-related kinases that are involved in the coordination between nutritional or mitogenic signals and cell growth. Here we report the initial characterization of two Schizosaccharomyces pombe TOR homologs, tor1(+) and tor2(+). tor2(+) is an essential gene, whereas tor1(+) is required only under starvation and other stress conditions. Specifically, Deltator1 cells fail to enter stationary phase or undergo sexual development and are sensitive to cold, osmotic stress, and oxidative stress. In complex with the prolyl isomerase FKBP12, the drug rapamycin binds a conserved domain in TORs, FRB, thus inhibiting some of the functions of TORs. Mutations at a conserved serine within the FRB domain of Saccharomyces cerevisiae TOR proteins led to rapamycin resistance but did not otherwise affect the functions of the proteins. The S. pombe tor1(+) exhibits different features; substitution of the conserved serine residue, Ser(1834), with arginine compromises its functions and has no effect on the inhibition that rapamycin exerts on sexual development in S. pombe.  相似文献   

7.
Arabidopsis plants possess a family of nine AtAtg8 gene homologues of the yeast autophagy-associated Apg8/Aut7 gene. To gain insight into how these genes function in plants, first, the expression patterns of five AtAtg8 homologues were analysed in young Arabidopsis plants grown under favourable growth conditions or following exposure to prolonged darkness or sugar starvation. Promoters, plus the entire coding regions (exons and introns) of the AtAtg8 genes, were fused to the beta-glucuronidase reporter gene and transformed into Arabidopsis plants. In all plants, grown under favourable growth conditions, beta-glucuronidase staining was much more significant in roots than in shoots. Different genes showed distinct spatial and temporal expression patterns in roots. In some transgenic plants, beta-glucuronidase staining in leaves was induced by prolonged darkness or sugar starvation. Next, Arabidopsis plants were transformed with chimeric gene-encoding Atg8f protein fused to N-terminal green fluorescent protein and C-terminal haemagglutinin epitope tags. Analysis of these plants showed that, under favourable growth conditions, the Atg8f protein is efficiently processed and is localized to autophagosome-resembling structures, both in the cytosol and in the central vacuole, in a similar manner to its processing and localization under starvation stresses. Moreover, treatment with a cocktail of proteasome inhibitors did not prevent the turnover of this protein, implying that its turnover takes place in the vacuoles, as occurs in yeasts. The results suggest that, in plants, the cellular processes involving the Atg8 genes function efficiently in young, non-senescing tissues, both under favourable growth conditions and under starvation stresses.  相似文献   

8.
Nutritional deficiency, starvation, and tissue antioxidant status   总被引:1,自引:0,他引:1  
Tissue antioxidant status may be compromised under conditions of dietary restriction, either as the result of a deficiency in a specific cofactor required by a particular antioxidant enzyme or of more complex alterations of a generalized nature triggered by metabolic responses to starvation. Many similarities exist between insulin-reversible abnormalities in tissue antioxidant enzyme activities seen in experimental diabetes and in animals subjected to food deprivation-induced weight loss which is associated with hypoinsulinemia. The complex alterations in tissue antioxidant enzyme activities resulting from nutritional deficiency states, disease or drug administration may have important clinical consequences. Free radical-related processes have been implicated in the pathology of certain conditions in which weight loss is frequently recommended (e.g., diabetes and atherosclerosis). It will be important to investigate the possible adverse effects of this intervention on the underlying disease process involved. Glutathione-dependent hepatic detoxification processes are impaired under conditions of nutritional deficiency. This finding not only has important clinical implications but the standard practice of fasting small laboratory animals overnight to ensure reliable drug absorption can markedly influence the results of pharmacological/toxicological experiments. Further studies of the influence of nutritional status on free radical-related processes are likely to yield valuable information which may be applicable to a variety of research and clinical problems.  相似文献   

9.
The effects of UV-B radiation and/or deprivation of nitrogen stresses on growth rate, some antioxidant compounds, and activities of some antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), ascorbate peroxidase (APx; EC1.11.1.11), guaiacol peroxidase (GUPx; EC1.11.1.7) and glutathione reductase (GR, EC 1.6.4.2), as well as the levels of total glutathione pool, UV-B absorbing pigments, malondialdehyde (MDA) and H2O2 concentrations were studied in Spirulina platensis and Dunaliella salina. Less damage was observed in response to the combined UV-B and nitrogen deprivation as shown by growth rate and photosynthetic pigments especially in Dunaliella salina. A significant increase in flavonoids and phenolics under dual stress was observed. Conversely, a great reduction in malondialdehyde (MDA) and H2O2 concentrations were recorded under the combined stress compared to the effect of each stress. Furthermore, a significant increase in GSH/GSSG ratio toward the control was recorded in response to combined stresses, whereas a significant reduction in this ratio was observed in both microalgae in response to each stress. Increased activities of antioxidant enzymes were recorded under UV-B and nitrogen deprivation stresses.  相似文献   

10.
Microbial adaptation to environmental stress plays an important role in survival. It is necessary to understand the mechanisms underlying the survival of microbes under stress, as they may eventually aid in the successful control of the growth and persistence of these organisms. During nutrient starvation, Escherichia coli elicits a stringent response to conserve energy. The hallmark of the stringent response is the accumulation of guanosine tetra- (ppGpp) and pentaphosphates (pppGpp), which probably bind RNA polymerase to regulate gene expression at certain promoters. Recently, there has been renewed interest in the stringent responses of other microbes, with a view to correlating it with sporulation, virulence and long-term persistence.  相似文献   

11.
Synopsis Growth and survival of Colorado squawfish, Ptychocheilus lucius, larvae under fluctuating 18, 22, and 26° C (5° C diel fluctuations) and constant 18, 22, 26° C, and 30° C temperature conditions and ration size corresponding to 12.5, 28,64,142, 320 brine shrimp nauplii fish–1 day–1 determined from laboratory experiments. Growth was optimal at 31° C and high at temperatures of 26° C to 30° C, at the highest food abundance. Lowest growth was under lowest food rations and highest temperatures. Growth of Colorado squawfish larvae declined substantially at temperatures < 22° C. Neither growth nor survival was significantly different between fluctuating or constant regimes. Survival of Colorado squawfish larvae was highest (95%) at 26.2° C and 235 nauplii fish–1 day–1 and high at temperatures of 20 to 30° C with food abundance > 180 nauplii fish–1 day–1. Survival was lowest when food abundance was low and temperature was high. Highest mortality occurred more than 20 days after experiments began and mortalities occurred sooner in higher than lower temperatures. Colorado squawfish larvae denied food for 5, 10, or 15 d after first feeding could have begun (6 d), had survival greater than 87 % which was equivalent to continuously fed controls. Survival of fish denied food for 17.5 d after feeding could have begun declined from 84% before feeding to 57% after feeding. Point of no return was estimated between 17.5 and 20 d. Colorado squawfish have relatively high starvation resistance. Low, stable flows that simulate natural hydrographs may enhance growth, survival, and recruitment of early life stages of Colorado squawfish by increasing water temperature and food abundance in regulated rivers of the Colorado River basin.  相似文献   

12.
A biological setpoint for fatness has been proposed in the medical literature. This body weight setpoint functions as a point of stable equilibrium. In an underfed state, with resulting weight loss, the body will reduce the relative energy expenditure by metabolic adaption which reduces the rate of weight loss. Previous mathematical models of energy expenditure and weight loss dynamics have not addressed this setpoint mechanism. The setpoint model has been proposed to quantify this biological process and is unique in predicting energy expenditure during weight loss as a function of the setpoint fat-free mass ratio and setpoint energy expenditure, eliminating the various controlling characteristics such as age, gender and heredity. The model is applied to the seminal Minnesota human semistarvation experiment and is used to predict weight vs time on an individual basis and the caloric requirements for weight maintenance at the reduced weight. Comparison is made with the Harris-Benedict equations and the Brody-Kleiber. (W 3/4) law.  相似文献   

13.
Purified pig heart pyruvate dehydrogenase complex is denuded of its intrinsic pyruvate dehydrogenase kinase activity by sedimentation from dilute solution (60 munits/ml). Kinase activity is restored by a supernatant fraction prepared by high-speed centrifugation of rat heart mitochondrial extracts; the factor responsible is referred to as kinase/activator. Kinase/activator was also assayed by its ability to accelerate NgATP-induced inactivation in dilute solutions of unprocessed complex (50 munits/ml). With this assay it has been shown that the activity of kinase/activator in heart mitochondria is increased 3-6 fold by starvation of rats for 48 h. This increase was prevented completely by cycloheximide treatment and prevented partially by puromycin treatment of rats during starvation. The concentration of kinase/activator in heart mitochondria fell during 20 h of re-feeding of 48 h-starved rats; this fall was correlated with an increase in the proportion of complex in the active form. Kinase/activator was also extracted from ox kidney mitochondria, and on gel filtration (Sephadex G-100, superfine grade) was eluted close to the void volume. Kinase/activator (ox kidney or rat heart) was thermolabile, non-diffusable on dialysis, and inactivated by trypsin. The results of this study appear to show increased cytoplasmic synthesis in starvation of pyruvate dehydrogenase kinase and/or of an activator of the kinase.  相似文献   

14.
植物干旱胁迫下水分代谢、碳饥饿与死亡机理   总被引:5,自引:0,他引:5  
董蕾  李吉跃 《生态学报》2013,33(18):5477-5483
植物在生长发育过程中受众多环境因子共同作用。随着全球气候变化,气温升高、降水量下降等问题频繁出现。目前气象学家一致预测未来环境变暖会使干旱更加频繁剧烈,这一环境改变使植物死亡更加严重。植物在水分胁迫、特别是干旱胁迫条件下,体内水分代谢与碳代谢会发生失衡现象:光合速率降低、蒸腾速率降低,带来生长降低;为维持植物新陈代谢,植物呼吸作用必然下调。在长期干旱胁迫条件下植物体内碳水化合物储存发生失衡现象,这种失衡使植物陷入碳饥饿现象。另外,由于水分失衡而出现的木质部栓塞和空穴会进一步加剧水分运输障碍,而修复空穴则需要大量非结构性碳水化合物(NSC),这使植物陷入两难选择。总结了植物干旱胁迫下,碳饥饿与水分代谢、植物死亡关系的相关研究,对未来的研究方向和重点提出建议,以期对未来的植物死亡研究提供帮助。  相似文献   

15.
I examined the growth of surviving nestlings in broods of the cooperatively breeding laughing kookaburra Dacelo novaeguineae , which has complex patterns of brood reduction. Laughing kookaburras usually lay three eggs that hatch asynchronously. Brood reduction occurs in nearly half of all broods and always affects the youngest nestling. In most cases, the youngest nestling is killed within a few days of hatching by aggressive attacks from its older siblings. In a smaller proportion of nests, the youngest nestling dies from starvation, rather than physical attack, much later in the nestling period when nestling growth rates and adult feeding rates peak (about 20 days post-hatching). These mechanistically and temporally distinct episodes of brood reduction were associated with very different patterns of growth in the senior nestlings. Seniors that killed their youngest sibling reached higher asymptotic weights than seniors that did not commit siblicide. In contrast, if the youngest nestling was not killed by its older siblings, but later starved to death, the surviving seniors were skeletally smaller and had retarded feather development compared to seniors from other broods. These differences in nestling growth may have longer-term fitness consequences, because kookaburra fledging weight is positively associated with both juvenile survival and successful recruitment into the breeding population. Therefore, although parents of broods without mortality produce the highest number of fledglings and also the highest number of independent juveniles, if parents are unable to raise a full brood, early siblicide may represent the best brood reduction option. Early siblicide is at least associated with high quality young that have enhanced survival and recruitment prospects. In contrast, the poor growth of seniors in broods where the youngest nestling starved suggests that parents overestimated the size of the brood they could provision.  相似文献   

16.
17.
Summary Mature spinach plants were held in the dark for several days. The photochemical activities and the activity of some enzymes related to NADP reduction were follwed in the chloroplasts isolated from leaves after dark starvation. Photosystem-II, measured by reduction of DPIP, remained stable during 6 days of darkening. The decrease of NADP reduction which appeared after 2 days of starvation was found to be due to protein autolysis rather than inactivation of the photosystems. The stability of photosystem-I was demonstrated by reactivation of NADP reduction after addition of purified ferredoxin and ferredoxin-NADP-reductase. After 4 days of starvation the restoration of the NADP reduction required in addition another, low-molecular-weight factor. From the isolation procedure and from its properties this factor is assumed to be identical with FRS. However, even in the presence of FRS only half of the total activity is restored after 7 days. The activity of the NADP-reducing system is restored in vivo when plants kept for 7 days in the dark are again illuminated.Abbreviations NADP nicotinamide-adenine-dinucleotide phosphate - DPIP 2,6-dichlorophenolindophenol - DCMU (3,4-dichlorophenyl)-1,1-dimethylurea - FRS ferredoxin-reducing-substance  相似文献   

18.
Krapf  Götz  Jacobi  Günter 《Planta》1975,124(2):135-143
Summary The fixation pattern of radioactive labelled photosynthetic intermediates was followed under steady state conditions during prolonged dark starvation of spinach plants (Spinacia oleracea L.). It is suggested that the considerable increase of radioactive dihydroxyacetonephosphate is correlated with a specific leakage of the outer chloroplast envelope induced by dark starvation. The primary fixation product, phosphoglyceric acid, followed the same decreasing tendency as observed for the net CO2 fixation. In contrast, the relative label in other intermediates is the same as in the controls. When after several days of dark starvation the plants were again transferred into light, a regeneration of the CO2 fixation accompanied by the appearance of a normal fixation pattern was observed. Since the regeneration was prevented by the addition of lincomycin, the net increase is considered to be due to a new protein synthesis rather than a reactivation.Abbreviations GAPDH glyceraldehyde phosphate dehydrogenase (E.C. 1.2.1.13) - DHAP dihydroxyacetonphosphate - FDP fructose 1,6-diphosphate - glol glycolic acid - PGA 3-phosphoglyceric acid - S-D-P sugar diphosphates - S-M-P sugar monophosphates Part I: Postius and Jacobi (1971).  相似文献   

19.
The starvation stress response of Salmonella typhimurium encompasses the genetic and physiologic changes that occur when this bacterium is starved for an essential nutrient such as phosphate (P), carbon (C), or nitrogen (N). The responses to the limitation of each of these nutrients involve both unique and overlapping sets of proteins important for starvation survival and virulence. The role of the alternative sigma factor RpoS in the regulation of the starvation survival loci, stiA, stiB, and stiC, has been characterized. RpoS (sigma S) was found to be required for the P, C, and N starvation induction of stiA and stiC. In contrast, RpoS was found to be required for the negative regulation of stiB during P and C starvation-induced stationary phase but not during logarithmic phase. This role was independent of the relA gene (previously found to be needed for stiB induction). The role of RpoS alone and in combination with one or more sti mutations in the starvation survival of the organism was also investigated. The results clearly demonstrate that RpoS is an integral component of the complex interconnected regulatory systems involved in S. typhimurium's response to nutrient deprivation. However, differential responses of various sti genes indicate that additional signals and regulatory proteins are also involved.  相似文献   

20.
Cold, salinity and drought stresses: an overview   总被引:57,自引:0,他引:57  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号