首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural genomics began as a global effort in the 1990s to determine the tertiary structures of all protein families as a response to large-scale genome sequencing projects. The immediate outcome was an influx of tens of thousands of protein structures, many of which had unknown functions. At the time, the value of structural genomics was controversial. However, the structures themselves were only the most obvious output. In addition, these newly solved structures motivated the emergence of huge data science and infrastructure efforts, which, together with advances in Deep Learning, have brought about a revolution in computational molecular biology. Here, we review some of the computational research carried out at the Protein Data Bank Japan (PDBj) during the Protein 3000 project under the leadership of Haruki Nakamura, much of which continues to flourish today.  相似文献   

2.
Protein Data Bank Japan (PDBj), a founding member of the worldwide Protein Data Bank (wwPDB) has accepted, processed and distributed experimentally determined biological macromolecular structures for 20 years. During that time, we have continuously made major improvements to our query search interface of PDBj Mine 2, the BMRBj web interface, and EM Navigator for PDB/BMRB/EMDB entries. PDBj also serves PDB‐related secondary database data, original web‐based modeling services such as Homology modeling of complex structure (HOMCOS), visualization services and utility tools, which we have continuously enhanced and expanded throughout the years. In addition, we have recently developed several unique archives, BSM‐Arc for computational structure models, and XRDa for raw X‐ray diffraction images, both of which promote open science in the structural biology community. During the COVID‐19 pandemic, PDBj has also started to provide feature pages for COVID‐19 related entries across all available archives at PDBj from raw experimental data and PDB structural data to computationally predicted models, while also providing COVID‐19 outreach content for high school students and teachers.  相似文献   

3.
The Protein Data Bank Japan (PDBj) curates, edits and distributes protein structural data as a member of the worldwide Protein Data Bank (wwPDB) and currently processes approximately 25-30% of all deposited data in the world. Structural information is enhanced by the addition of biological and biochemical functional data as well as experimental details extracted from the literature and other databases. Several applications have been developed at PDBj for structural biology and biomedical studies: (i) a Java-based molecular graphics viewer, jV; (ii) display of electron density maps for the evaluation of structure quality; (iii) an extensive database of molecular surfaces for functional sites, eF-site, as well as a search service for similar molecular surfaces, eF-seek; (iv) identification of sequence and structural neighbors; (v) a graphical user interface to all known protein folds with links to the above applications, Protein Globe. Recent examples are shown that highlight the utility of these tools in recognizing remote homologies between pairs of protein structures and in assigning putative biochemical functions to newly determined targets from structural genomics projects.  相似文献   

4.
The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB.  相似文献   

5.
Starting with the Protein Data Bank (PDB) as a common ancestor, the evolution of structural databases has been driven by the rapprochement of the structural world and the practical applications. The result is an impressive number of secondary structural databases that is welcomed by structural biologists and bioinformaticians but runs the risk of producing an embarrassment of riches among non-specialist users. Given that any profit depends on the number of customers, efficient interfaces between many structural data banks must be available to make their contents easily accessible. Increasing the information content of central structural repositories might be the best way to guide users through the many, sometimes overlapping databases.  相似文献   

6.
We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi ), a web‐based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model‐validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non‐expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) “Resolution Revolution” made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.  相似文献   

8.
Protein Data Bank (PDB) file contains atomic data for protein and ligand in protein-ligand complexes. Structure data file (SDF) contains data for atoms, bonds, connectivity and coordinates of molecule for ligands. We describe PDBToSDF as a tool to separate the ligand data from pdb file for the calculation of ligand properties like molecular weight, number of hydrogen bond acceptors, hydrogen bond receptors easily.  相似文献   

9.
Receiving his initial training jointly in theoretical and applied physics at the University of Tokyo, Professor Haruki Nakamura has had a long and eventful scientific career, along the way helping to shape the way that biophysics is carried out in Japan. Concentrating his research efforts on the simulation of protein structure and function, he has, over his career arc, acted as director of the Institute for Protein Research (Osaka, Japan), director of the Protein Data Bank of Japan (PDBj), president of the Biophysical Society of Japan (BSJ), president of the Protein Science Society of Japan (PSSJ), and group leader and professor of Bioinformatics and Computational Structural Biology at Osaka University. In 2022, Prof. Haruki Nakamura turned 70 years old, and to mark this occasion, his scientific colleagues from around the world have combined their efforts to produce this Festschrift Issue of the IUPAB Biophysical Reviews journal around the theme of the computational biophysics and structural biology of proteins.

The aim of this Festschrift Issue is to both acknowledge and celebrate the scientific career and achievements of Prof. Haruki Nakamura by publishing a series of review articles contributed by his former students and colleagues in the field of computational and structural biology. In this Editorial, we first provide some background to the articles published within this Special Issue (SI) before then going on to describe some background to Professor Nakamura’s life, research science, and professional endeavors.  相似文献   

10.
The Protein Data Bank (PDB) is the repository for three-dimensional structures of biological macromolecules, determined by experimental methods. The data in the archive is free and easily available via the Internet from any of the worldwide centers managing this global archive. These data are used by scientists, researchers, bioinformatics specialists, educators, students, and general audiences to understand biological phenomenon at a molecular level. Analysis of this structural data also inspires and facilitates new discoveries in science. This chapter describes the tools and methods currently used for deposition, processing, and release of data in the PDB. References to future enhancements are also included. Shuchismita Dutta, Kyle Burkhardt, and Ganesh J. Swaminathan have contributed equally to this work.  相似文献   

11.
A symposium celebrating the 40th anniversary of the Protein Data Bank archive (PDB), organized by the Worldwide Protein Data Bank, was held at Cold Spring Harbor Laboratory (CSHL) October 28-30, 2011. PDB40's distinguished speakers highlighted four decades of innovation in structural biology, from the early?era of structural determination to future directions for the field.  相似文献   

12.
Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open‐access global archive housing three‐dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB. RCSB PDB is also responsible for the security of PDB data in its role as wwPDB‐designated Archive Keeper. Every year, RCSB PDB serves tens of thousands of depositors of 3D macromolecular structure data (coming from macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro‐electron diffraction). The RCSB PDB research‐focused web portal (RCSB.org) makes PDB data available at no charge and without usage restrictions to many millions of PDB data consumers around the world. The RCSB PDB training, outreach, and education web portal (PDB101.RCSB.org) serves nearly 700 K educators, students, and members of the public worldwide. This invited Tools Issue contribution describes how RCSB PDB (i) is organized; (ii) works with wwPDB partners to process new depositions; (iii) serves as the wwPDB‐designated Archive Keeper; (iv) enables exploration and 3D visualization of PDB data via RCSB.org; and (v) supports training, outreach, and education via PDB101.RCSB.org. New tools and features at RCSB.org are presented using examples drawn from high‐resolution structural studies of proteins relevant to treatment of human cancers by targeting immune checkpoints.  相似文献   

13.
With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide‐like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide‐like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single‐component molecules, their peptide‐like composition was captured in a new representation, called the subcomponent sequence. A novel concept called “group” was developed for representing complex peptide‐like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide‐like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide‐like inhibitors and antibiotics accurately and consistently. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 659–668, 2014.  相似文献   

14.
We present a novel topological classification of RNA secondary structures with pseudoknots. It is based on the topological genus of the circular diagram associated to the RNA base-pair structure. The genus is a positive integer number whose value quantifies the topological complexity of the folded RNA structure. In such a representation, planar diagrams correspond to pure RNA secondary structures and have zero genus, whereas non-planar diagrams correspond to pseudoknotted structures and have higher genus. The topological genus allows for the definition of topological folding motifs, similar in spirit to those introduced and commonly used in protein folding. We analyze real RNA structures from the databases Worldwide Protein Data Bank and Pseudobase and classify them according to their topological genus. For simplicity, we limit our analysis by considering only Watson-Crick complementary base pairs and G-U wobble base pairs. We compare the results of our statistical survey with existing theoretical and numerical models. We also discuss possible applications of this classification and show how it can be used for identifying new RNA structural motifs.  相似文献   

15.
PDBx/mmCIF, Protein Data Bank Exchange (PDBx) macromolecular Crystallographic Information Framework (mmCIF), has become the data standard for structural biology. With its early roots in the domain of small-molecule crystallography, PDBx/mmCIF provides an extensible data representation that is used for deposition, archiving, remediation, and public dissemination of experimentally determined three-dimensional (3D) structures of biological macromolecules by the Worldwide Protein Data Bank (wwPDB, wwpdb.org). Extensions of PDBx/mmCIF are similarly used for computed structure models by ModelArchive (modelarchive.org), integrative/hybrid structures by PDB-Dev (pdb-dev.wwpdb.org), small angle scattering data by Small Angle Scattering Biological Data Bank SASBDB (sasbdb.org), and for models computed generated with the AlphaFold 2.0 deep learning software suite (alphafold.ebi.ac.uk). Community-driven development of PDBx/mmCIF spans three decades, involving contributions from researchers, software and methods developers in structural sciences, data repository providers, scientific publishers, and professional societies. Having a semantically rich and extensible data framework for representing a wide range of structural biology experimental and computational results, combined with expertly curated 3D biostructure data sets in public repositories, accelerates the pace of scientific discovery. Herein, we describe the architecture of the PDBx/mmCIF data standard, tools used to maintain representations of the data standard, governance, and processes by which data content standards are extended, plus community tools/software libraries available for processing and checking the integrity of PDBx/mmCIF data. Use cases exemplify how the members of the Worldwide Protein Data Bank have used PDBx/mmCIF as the foundation for its pipeline for delivering Findable, Accessible, Interoperable, and Reusable (FAIR) data to many millions of users worldwide.  相似文献   

16.
The analysis of disulphide bond containing proteins in the Protein Data Bank (PDB) revealed that out of 27,209 protein structures analyzed, 12,832 proteins contain at least one intra-chain disulphide bond and 811 proteins contain at least one inter-chain disulphide bond. The intra-chain disulphide bond containing proteins can be grouped into 256 categories based on the number of disulphide bonds and the disulphide bond connectivity patterns (DBCPs) that were generated according to the position of half-cystine residues along the protein chain. The PDB entries corresponding to these 256 categories represent 509 unique SCOP superfamilies. A simple web-based computational tool is made freely available at the website http://www.ccmb.res.in/bioinfo/dsbcp that allows flexible queries to be made on the database in order to retrieve useful information on the disulphide bond containing proteins in the PDB. The database is useful to identify the different SCOP superfamilies associated with a particular disulphide bond connectivity pattern or vice versa. It is possible to define a query based either on a single field or a combination of the following fields, i.e., PDB code, protein name, SCOP superfamily name, number of disulphide bonds, disulphide bond connectivity pattern and the number of amino acid residues in a protein chain and retrieve information that match the criterion. Thereby, the database may be useful to select suitable protein structural templates in order to model the more distantly related protein homologs/analogs using the comparative modeling methods.  相似文献   

17.
18.
This article describes the development and creation of the Protein Circular Dichroism Data Bank (PCDDB), a deposition and searchable data bank for validated circular dichroism spectra located at http://pcddb.cryst.bbk.ac.uk/.  相似文献   

19.
We have obtained a 1.55-Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni under conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical with that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with that of previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active-site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest-resolution ribozyme structure in the Protein Data Bank.  相似文献   

20.
Analyses of publicly available structural data reveal interesting insights into the impact of the three‐dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G‐protein‐coupled receptors, voltage‐gated ion channels, ligand‐gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic‐level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open‐access, digital‐data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB; wwPDB.org ). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions of RCSB.org users worldwide by delivering PDB data integrated with ~40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ~90% of the 210 new drugs approved by the US Food and Drug Administration 2010–2016. We review user‐driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure‐guided drug discovery for challenging targets (e.g., integral membrane proteins).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号