首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domestication and breeding of citrus species/varieties for flavor and other characteristics, based on the ancestral species pummelo, mandarin and citron, has been an ongoing process for thousands of years. Bitterness, a desirable flavor characteristic in the fruit of some citrus species (pummelo and grapefruit) and undesirable in others (oranges and mandarins), has been under positive or negative selection during the breeding process of new species/varieties. Bitterness in citrus fruit is determined by the composition of branched‐chain flavanone glycosides, the predominant flavonoids in citrus. The flavor‐determining biosynthetic step is catalyzed by two branch‐forming rhamnosyltransferases that utilize flavanone‐7‐O‐glucose as substrate. The 1,2‐rhamnosytransferase (encoded by Cm1,2RhaT) leads to the bitter flavanone‐7‐O‐neohesperidosides whereas the 1,6‐rhamnosytransferase leads to the tastelessflavanone‐7‐O‐rutinosides. Here, we describe the functional characterization of Cs1,6RhaT, a 1,6‐rhamnosyltransferase‐encoding gene directing biosynthesis of the tasteless flavanone rutinosides common to the non‐bitter citrus species. Cs1,6RhaT was found to be a substrate‐promiscuous enzyme catalyzing branched‐chain rhamnosylation of flavonoids glucosylated at positions 3 or 7. In vivo substrates include flavanones, flavones, flavonols and anthocyanins. Cs1,6RhaT enzyme levels were shown to peak in young fruit and leaves, and gradually subside during development. Phylogenetic analysis of Cm1,2RhaT and Cs1,6RhaT demonstrated that they both belong to the branch‐forming glycosyltransferase cluster, but are distantly related and probably originated separately before speciation of the citrus genome. Genomic data from citrus, supported by a study of Cs1,6RhaT protein levels in various citrus species, suggest that inheritance, expression levels and mutations of branch‐forming rhamnosyltransferases underlie the development of bitter or non‐bitter species/varieties under domestication.  相似文献   

2.
Species of the genus Citrus accumulate large quantities of flavanones that affect fruit flavor and have been documented to benefit human health. Bitter species, such as grapefruit and pummelo, accumulate bitter flavanone-7-O-neohesperidosides responsible, in part, for their characteristic taste. Non-bitter species, such as mandarin and orange, accumulate only tasteless flavanone-7-O-rutinosides. The key flavor-determining step of citrus flavanone-glycoside biosynthesis is catalyzed by rhamnosyltransferases; 1,2 rhamnosyltransferases (1,2RhaT) catalyze biosynthesis of the bitter neohesperidosides, while 1,6 rhamnosyltransferases (1,6RhaT) catalyze biosynthesis of the tasteless rutinosides. We report on the isolation and functional characterization of the gene Cm1,2RhaT from pummelo which encodes a citrus 1,2RhaT. Functional analysis of Cm1,2RhaT recombinant enzyme was conducted by biotransformation of the substrates using transgenic plant cell culture. Flavanones and flavones, but not flavonols, were biotransformed into 7-O-neohesperidosides by the transgenic BY2 tobacco cells expressing recombinant Cm1,2RhaT. Immunoblot analysis established that 1,2RhaT protein was expressed only in the bitter citrus species and that 1,6RhaT enzyme, whose activity was previously documented in non-bitter species, was not cross-reactive. Expression of Cm1,2RhaT at the RNA level was prominent in young fruit and leaves, but low in the corresponding mature tissue, thus correlating well with the developmental pattern of accumulation of flavanone-neohesperidosides previously established. Phylogenetic analysis of the flavonoid glycosyltransferase gene family places Cm1,2RhaT on a separate gene cluster together with the only other functionally characterized flavonoid-glucoside rhamnosyltransferase gene, suggesting a common evolutionary origin for rhamnosyltransferases specializing in glycosylation of the sugar moieties of flavonoid glucosides.  相似文献   

3.
A new endoperoxysesquiterpene lactone, 10α-hydroxy-1α,4α-endoperoxy-guaia-2-en-12,6α-olide (1), together with a flavanone, eriodictyol (2), and two flavone glycosides, acacetin-7-O-β-d-glucopyranoside (3) and acacetin-7-O-α-l-rhamopyranoside (4), were isolated from the methanol extract of Chrysanthemum morifolium flowers by a bioassay-guided fractionation. Compound 1 showed strong inhibitory effects against α-glucosidase and lipase activities, with IC50 values of 229.3 and 161.0 μM, respectively. The flavone glycosides 3 and 4 inhibited both α-glucosidase and α-amylase, while flavanone 2 was only effective against α-amylase.  相似文献   

4.
An acylated acacetin-7-O-rutinoside of Valeriana wallichii has been shown to be a mixture of its 2?-O-and 3?-O-2-methylbutyryl esters by 13C-NMR, GLC, and MS.  相似文献   

5.
We examined the foliar flavonoids of Chrysanthemum arcticum subsp. arcticum and yezoense, and related Chrysanthemum species. Five flavonoid glycosides (luteolin 7-O-glucoside and 7-O-glucuronides of luteolin, apigenin, eriodictyol and naringenin) were isolated from these taxa. Luteolin 7-O-xylosylglucoside, luteolin, apigenin and quercetin 3-methyl ether were found in subsp. yezoense as very minor compounds that were not recognised by high-performance liquid chromatography/photodiode array (HPLC/PDA). The related species C. yezoense contained acacetin 7-O-rutinoside and some methoxylated flavone aglycones as major compounds. Thus, C. arcticum was distinguished from C. yezoense according to their flavonoid profiles.  相似文献   

6.
Increased flavonoid concentrations were found to correlate with the elevated levels of leaf phenolic compounds occurring in blight-induced zinc-deficient citrus. In orange (Citrus sinensis L.) leaves, the increases occurred primarily in hesperidin and diosmin, whereas in grapefruit (C. paradisi Macf.) the largest increases occurred in naringin and rhoifolin. Zinc-deficiency occurring in the blighted citrus leaves appeared to be the important contributing factor to the increased flavonoid content. Although the leaves from trees with blight were typically smaller than leaves from unaffected trees, the increased flavonoid content was not significantly due to a concentration effect. Large differences occurred in the percent increases in concentrations of certain citrus leaf flavonoids. While large increases occurred for a number of flavanone and flavone glycosides, much smaller percent increases occurred for other minor flavone glycosides, and the polymethoxyflavone aglycones. The parallel increases occurring in the concentrations of certain flavone glycosides and their flavanone analogs provide a further indication that flavanone glycosides are precursors in the biosynthesis of flavone glycosides in citrus.  相似文献   

7.
Mayaca is an aquatic monocot of the monogeneric family Mayacaceae. The flavonol glycosides quercetin 3-O-glucoside, quercetin 3-O-rutinoside, and kaempferol 3-O-glucoside, and the flavone luteolin 5-O-glucoside were found in methanolic leaf extracts. The presence of flavonol and flavone O-glycosides sets the Mayacaceae apart from the Commelinaceae, which accumulates predominantly flavone C-glycosides.  相似文献   

8.
Previous indirect evidence suggested that the biosynthesis of flavonoids in Citrus may not proceed via the usual chalcone synthase reaction and that glycosylation occurs during chalcone formation and not afterward, as has been reported in other species. We detected chalcone-synthase and UDP-glucose:flavanone-7-O-glucosyl-transferase activities in cell-free extracts of Citrus. The glucosylated flavanone was further rhamnosylated when exogenous UDP-glucose and NADPH were added to the extract. Chalcone-synthase activity was detected in cell-free extracts derived from young leaves and fruits. Young fruits (2 millimeter diameter) had the highest chalcone synthase activity. UDP-glucose:flavanone-7-O-glucosyl-transferase activity was measured in cell-free extracts derived from young leaves and fruits of Citrus mitis and Citrus maxima. The highest UDP-glucose:flavanone-7-O-glucosyl-transferase activity was found in young C. maxima leaves. These data indicate that Citrus contains a flavonoid pathway similar to that studied in other species.  相似文献   

9.
The flavonoids and xanthones in the leaves of Amorphophallus titanum, which has the largest inflorescence among all Araceous species, were surveyed. Eight C-glycosylflavones, five flavonols, one flavone O-glycoside and two xanthones were isolated and characterized as vitexin, isovitexin, orientin, isoorientin, schaftoside, isoschaftoside, vicenin-2 and lucenin-2 (C-glycosylflavones), kaempferol 3-O-robinobioside, 3-O-rutinoside and 3-O-rhamnosylarabinoside, and quercetin 3-O-robinobioside and 3-O-rutinoside (flavonols), luteolin 7-O-glucoside (flavone), and mangiferin and isomangiferin (xanthones). Although the inflorescence of this species has been surveyed for flavonoids, those of the leaves were reported for the first time.  相似文献   

10.
A new flavanone glycoside, naringenin-7-O-β-d-glucuronopyranoside, and a new flavonol glycoside, 6-hydroxykaempferol-7-O-β-d-glucuronopyranoside were isolated together with 12 known compounds, 5 flavone glycoside; hispidulin-7-O-β-d-glucuronopyranoside, apigenin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-glucopyranoside, apigenin-7-O-β-d-glucopyranoside, a flavonol; kaempferol, two flavone; apigenin, and luteolin, a flavanone glycoside; eriodictyol-7-O-β-d-glucuronopyranoside, and three phenol glycoside; arbutin, salidroside, and 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside from Centaurea urvillei subsp. urvillei. The structure elucidation of the new compounds was achieved by a combination of one- (1H and 13C) and two-dimensional NMR techniques (G-COSY, G-HMQC, and G-HMBC) and LC-ESI-MS. The isolated compounds were tested for their antiproteasomal activity. The results indicated that kaempferol, a well known and widely distributed flavonoid in the plant kingdom, was the most active antiproteasomal agent, followed by apigenin, eriodictyol-7-O-β-d-glucuronopyranoside, 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside, and salidroside, respectively.  相似文献   

11.
Two new 5-methyl ether flavone glucosides (7,4′,5′-trihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside and 7,4′-dihydroxy-5-methoxyflavone 7-O-β-D-glucopyranoside) were isolated from the leaves of Thai mangrove Bruguiera gymnorrhiza together with 7,3′,4′,5′-tetrahydroxy-5-methoxyflavone, 7,4′,5′-trihydroxy-5,3′-dimethoxyflavone, luteolin 5-methyl ether 7-O-β-D-glucopyranoside, 7,4′-dihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranoside, rutin, kaempferol 3-O-rutinoside, myricetin 3-O-rutinoside and an aryl-tetralin lignan rhamnoside. The structure of a lignan rhamnoside was found to be related to racemiside, an isolated compound from Cotoneaster racemiflora, and also discussed. Structure determinations were based on analyses of physical and spectroscopic data including 1D- and 2D-NMR.  相似文献   

12.
Rutin, a 3-rutinosyl quercetin, is a representative flavonoid distributed in many plant species, and is highlighted for its therapeutic potential. In this study, we purified uridine diphosphate-rhamnose: quercetin 3-O-glucoside 6″-O-rhamnosyltransferase and isolated the corresponding cDNA (FeF3G6RhaT) from seedlings of common buckwheat (Fagopyrum esculentum). The recombinant FeF3G6″RhaT enzyme expressed in Escherichia coli exhibited 6″-O-rhamnosylation activity against flavonol 3-O-glucoside and flavonol 3-O-galactoside as substrates, but showed only faint activity against flavonoid 7-O-glucosides. Tobacco cells expressing FeF3G6RhaT converted the administered quercetin into rutin, suggesting that FeF3G6″RhaT can function as a rhamnosyltransferase in planta. Quantitative PCR analysis on several organs of common buckwheat revealed that accumulation of FeF3G6RhaT began during the early developmental stages of rutin-accumulating organs, such as flowers, leaves, and cotyledons. These results suggest that FeF3G6″RhaT is involved in rutin biosynthesis in common buckwheat.  相似文献   

13.
In order to provide additional information on the coloration of chrysanthemum flowers, the flavonoid composition and the expression of six structural genes involved in anthocyanin pathway in the ray florets of a pink flowering (cv. H5) and two white flowering (cvs. Keikai and Jinba) Chrysanthemum grandiflorum cultivars were examined. HPLCDAD/ESI-MSn analysis showed that cyanidin 3-O-(6″-O-malonylglucoside) and cyanidin 3-O-(3″,6″-O-dimalonylglucoside) were the two major flavonoids presented in H5, while white flowering cultivars contained flavones instead of anthocyanins. Nine flavone derivatives were detected in the three cultivars, the amount of each flavone varied upon cultivars, and seven of these were identified as luteolin 7-O-arabinosylglucuronide, apigenin 7-O-glucoside, luteolin 7-O-malonylglucoside, apigenin 7-O-malonylglucoside, chrysoeriol 7-O-malonylglucoside, acacetin 7-O-rutinoside and acacetin 7-O-malonylglucoside. The two white flowering cultivars showed similar total flavonoid content, which was about two fold higher than that in H5. A high expression of the genes encoding dihydroflavonol 4-reductase and 3-O-glucosyltransferase was detected only in H5 but not in Keikai or Jinba. Chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, and flavonoid 3′-hydroxylase were expressed in all flowers, suggesting that the lack of anthocyanin in white flowering cultivars cannot be due to any blockage of their expression.  相似文献   

14.
C-glycosylation, for the biogenesis of C-glycosylflavones, has been demonstrated to occur at the flavanone level for axenically-cultured Spirodela polyrhiza clone 7003. 4′,5,7-Trihydroxy[2-14C] flavanone (naringenin) was incorporated in a parallel manner into apigenin 7-O-glucoside and apigenin 8-C-glucoside (vitexin) and into luteolin 7-O-glucoside and luteolin 8-C-glucoside (orientin). In addition the data suggests that the enzyme which oxidizes flavanone (chalcone) to flavone is irreversible under the described experimental conditions.  相似文献   

15.
Daminozide is a well-known chemical inhibitor of the gibberellic acid biosynthesis pathway regulating the vegetative growth of potted chrysanthemums (Chrysanthemum morifolium Ramat.). However, the precise mechanism underlying daminozide-related floral color loss is unknown. To investigate the latter, in two separate greenhouse experiments, bronze flowering chrysanthemum cultivars ‘Baton Rouge’ and ‘Pelee’ were treated weekly with consecutive (0 or 5,000 mg l?1) foliar daminozide spray applications at early, intermediate, and late stages during the short-day photoperiod. The ray florets of both cultivars were sampled, and the effect of daminozide application on anthocyanins and their biosynthetic precursors were determined by HPLC. Daminozide applied to ‘Baton Rouge’ plants at early developmental stages was correlated with partial loss of red color, and HPLC analysis determined that this was associated with a 75 % reduction in ray floret anthocyanins. Conversely, a near complete loss of red coloration in daminozide-sprayed ‘Pelee’ relative to control plants was associated with as much as a 98 % decline in anthocyanins, irrespective of the time of application. HPLC analysis determined that daminozide application was associated with a 22–50 % increase in the flavones apigenin 7-O-rutinoside, acacetin 7-O-rutinoside, diosmetin 7-O-rutinoside, and eupatorin, and a 68 % increase in the flavonol quercetin 3-O-glucoside, in ray florets of ‘Pelee’ relative to control plants. There was no relative change in ‘Baton Rouge’ flavone and flavonol levels. The accumulation of bronze C. morifolium flavones and flavonols following foliar daminozide application suggests that red color loss is associated with inhibition of anthocyanidin synthase of ‘Pelee’ ray florets.  相似文献   

16.
Eight flavonoids were isolated from the leaves of Salix alba. One, apigenin 7-O-(4-p-coumarylglucoside), is a new natural compound; another, terniflorin, the 6-isomer, is an artefact. The others are quercetin 3-O-glucoside, quercetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-rutinoside and quercetin 7,′3-dimethylether 3-O-glucoside.  相似文献   

17.
The electron impact mass spectra of 14 trimethylsilylated flavone and flavanone mono- and diglycosides are reported for the first time. All spectra show well defined molecular ion peaks and those of O-glycosides additionally give evidence of the aglycone and the sugar(s), the sugar attachment, the sugar sequence and the interglycosidic linkage (of flavone and flavanone biosides).  相似文献   

18.
One new β-hydroxychalcone, 4-acetoxy-5,2′,4′,6′,β-pentahydroxy-3-methoxychalcone (1), one new flavanone, 7,3′-dihydroxy-5,4′-dimethoxyflavanone (2) and seven known compounds, 2R, 3R-trans-aromadendrin (3), naringenin-7-O-methylether (4), myricetin (5), quercetin-3-O-rutinoside (6), ursolic acid (7), gallic acid (8) and d-glucose (9) were isolated from the methanolic fruit extract of Cornus mas L. (=Cornus mascula L.), Cornaceae. The structures of the new compounds were elucidated on the basis of extensive spectroscopic methods, including 2D NMR experiments and of known compounds by comparison of physical and spectral data with literature.  相似文献   

19.
Three anthocyanins (13) and eight flavonols (411) were isolated from the flowers of Amherstia nobilis endemic to Myanmar. Anthocyanins were identified as cyanidin 3-O-glucoside (1), 3-O-xyloside (2), and peonidin 3-O-glucoside (3). On the other hand, flavonols were identified as isorhamnetin 3-O-glucoside (4), 7-O-glucoside (5), 3,7-di-O-glucoside (6) and 3-O-rutinoside (7), quercetin 3-O-rutinoside (8) and 3-O-glucoside (9), and kaempferol 3-O-rutinoside (10) and 3-O-glucoside (11). Although an anthocyanin, pelargonidin 3-O-pentoside, has been reported from the flowers of A. nobilis, it was not found in this survey. The presence of flavonols in A. nobilis was reported in this survey for the first time. Flavonoid composition of Amherstia was chemotaxonomically compared with those of phylogenetically related genera Cynometra and Brownea.  相似文献   

20.
External and internal flavonoids were isolated from 12 Uncarina taxa (Pedaliaceae), endemic to Madagascar. Four flavone aglycones, tricetin 7,3′,5′-trimethyl ether, tricetin 7,4′,5′-trimethyl ether, 5,3′-dihydroxy-6,7,4′,5′-tetramethoxyflavone and eupatorin were isolated from leaf wax of seven Uncarina taxa, Uncarina grandidieri, Uncarina decaryi, Uncarina abbreviata, Uncarina turicana, Uncarina platycarpa, Uncarina leandrii var. leandrii and Uncarina peltata, but not Uncarina stellulifera, Uncarina perrieri, Uncarina sakalava, Uncarina leptocarpa and U. leandrii var. rechbergeri. Furthermore, eight flavonoid glycosides were isolated from the leaves. Major glycosides were apigenin and luteolin 7-O-glucuronides and occurred in all the Uncarina taxa examined, except the absence of the former compound in U. peltata. Other glycosides were identified as hispidulin, jaceosidin, chrysoeriol and tricin 7-O-glucuronides, and luteolin 7,4′-di-O-glucuronide and a flavonol, isorhamnetin 3-O-diglucoside. From the results described above, methylated flavone aglycones and glucuronides were chemical characters of the leaves of Uncarina species, and also may be those of the family Pedaliaceae. Besides, an anthocyanin, two flavonols and three flavones were isolated from the flowers of U. grandidieri, and identified as cyanidin 3-O-rutinoside (anthocyanin), quercetin and isorhamnetin 7-O-glucuronides (flavonols) and apigenin, luteolin and jaceosidin 7-O-glucuronides (flavones).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号