首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of leukotriene A4 and B4 biosynthesis   总被引:4,自引:0,他引:4  
We have studied LTA4 and LTB4 synthesis in a cell-free system from RBL-1 cells. All the enzymes leading to the formation of LTB4 from arachidonic acid are localized in the soluble fraction (100,000 x g supernatant) of these cells. The formation of LTA4 and LTB4 is complete by 10 min. When we varied the arachidonic acid concentration from 1 to 300 microM, the synthesis of LTB4 leveled off at 30 microM and of LTA4 at 100 microM while 5-HETE had not reached a plateau at 300 microM. This enzyme system has the capacity to generate relatively large amounts of 5-HETE and LTA4 and only a relatively small amount of LTB4. Therefore, the rate limiting step is not the 5-lipoxygenase, the first step in the pathway, but the conversion of LTA4 to LTB4. This is in contrast to cyclooxygenase pathway where the first step is rate limiting. A second addition of arachidonic acid at submaximal concentration for LTA4 synthesis did not produce any additional LTA4 or LTB4. Further study of this phenomenon showed that the 5-lipoxygenase and LTA-synthase were inactivated with time by preincubation with arachidonic acid and that peroxy fatty acids seem to be the inactivating species.  相似文献   

2.
Enzymes involved in the biosynthesis of leukotriene B4   总被引:10,自引:0,他引:10  
  相似文献   

3.
The incubation of suspensions of canine tracheal epithelial cells of greater than 95% purity with arachidonic acid (25-200 micrograms/ml) for 60-120 min resulted in the generation of a maximum of 36.2 +/- 9.1 picomoles of leukotriene B4/10(6) cells, less than 2.0 picomoles of leukotrienes C4, D4, and E4/10(6) cells, and 1030 +/- 463, 767 +/- 500, and 324 +/- 100 picomoles/10(6) cells of 15-, 12-, and 5-hydroxy-eicosatetraenoic acids, respectively (mean +/- SEM, n = 8). The identity of leukotriene B4 was established by chromatographic and spectral properties, by reactivity with mono-specific anti-plasma, and by the chemotactic activity for neutrophils. Thus, the epithelium may be an important source of mediators of inflammation and hypersensitivity of pulmonary airways.  相似文献   

4.
1. Radioactivity from [3H]glucosamine is rapidly incorporated into cellular fractions of lens epithelial cells cultured in vitro. The incorporated isotope appears largely in glycoproteins of the cell surface that are exposed to trypsin and are released into a soluble form by proteolysis of intact cells. Glycoproteins are also secreted by cultured cells and can be recovered in the culture fluids. Sodium dodecysulphate-polyacrylamide gell electrophoresis shows that a range of glycoproteins with apparent molecular weights from approximately 14000 to 120000 are present. The relationships of these glycoproteins to collagen and the non-collagenous glycoproteins of lens basement membranes are discussed. 2. A plasma membrane fraction obtained from non-trypsinised lens epithelial cells contains one major glycoprotein of apparent molecular weight 120000. A major non-glycosylated polypeptide of molecular weight about 38000 detectable by Bloemendal et al. (1972) in plasma membranes of differentiated lens fibre cells was not prominent in lens epithelial cell membranes. 3. Examination of lens basement membranes extracted in various ways failed to reveal major glycoproteins of low molecular weight. Higher molecular weight glycoproteins, some of them related to collagen, were present.  相似文献   

5.
"Histone synthesis was compared in epithelial lens cells during exponential growth and in the stationary phase brought by contact inhibition. Double labelling experiments with 3H-lysine and 14C-lysine show a net turnover of histone H1 independent of DNA replication. The nucleosome core histones seem to turn over also, but much more slowly than H1".  相似文献   

6.
7.
8.
Leukotriene B4 (LTB4) is a potent mediator of pro-inflammatory responses including neutrophil degranulation. Leukotriene B4 dimethylamide has been synthesized and shown to inhibit neutrophil degranulation induced by LTB4. The inhibition required time to develop (~60 secs), and had a KD of circa 2 × 10?7M, and occurred at concentrations where LTB4 dimethylamide had negligible agonist activity.  相似文献   

9.
In a rabbit model of chronic intestinal inflammation, we previously demonstrated inhibition of neutral Na-amino acid cotransport. The mechanism of the inhibition was secondary to a decrease in the affinity for amino acid rather than the number of cotransporters. Since leukotriene (LT)D4 is known to be elevated in enterocytes during chronic intestinal inflammation, we used rat intestinal epithelial cell (IEC-18) monolayers to determine the mechanism of regulation of Na-alanine cotransport (alanine, serine, cysteine transporter 1: ASCT1) by LTD4. Na-alanine cotransport was inhibited by LTD4 in IEC-18 cells. The mechanism of inhibition of ASCT1 (solute carrier, SLC1A4) by LTD4 is secondary to a decrease in the affinity of the cotransporter for alanine without a significant change in cotransporter numbers and is not secondary to an alteration in the Na+ extruding capacity of the cells. Real-time quantitative PCR and Western blot analysis results indicate that ASCT1 message and protein levels are also unchanged in LTD4-treated IEC-18 cells. These results indicate that LTD4 inhibits Na-dependent neutral amino acid cotransport in IEC. The mechanism of inhibition is secondary to a decrease in the affinity for alanine, which is identical to that seen in villus cells from the chronically inflamed rabbit small intestine, where LTD4 levels are significantly increased.  相似文献   

10.
Airway epithelial cells (AEC) play an active role in the regulation of inflammatory airway disease. In the present study we analyzed the interaction of AEC with polymorphonuclear leukocytes (PMN) in coincubation with respect to their arachidonic acid (AA) metabolism using reversed phase-HPLC and post-HPLC-ELISA. Primary cultures of porcine AEC released predominantly PGE2, PGF2a, and 15-hydroxyeicosatetraenoic acid (15-HETE), whereas the major human PMN-derived AA metabolite was the chemotactic factor leukotriene B4 (LTB4). In AEC-PMN cocultures stimulated with the calcium ionophore A23187, PMN-related 5-lipoxygenase products were decreased by 45%. This reduction in LTB4 formation in the presence of AEC was mainly due to PGE2 generated by the epithelial cells, whereas 15-HETE made a minor contribution. Most of the effect was inhibited by AEC pretreatment with acetylsalicylic acid and restored by addition of equivalent amounts of exogenous PGE2. LTB4 degradation was not enhanced in PMN-AEC coincubations. Moreover, reduction of LTB4 formation in this system did not require an intimate cell-to-cell contact as shown by studies involving filter membranes for PMN-AEC separation. Superoxide anion concentrations were also decreased in PMN-AEC coincubations; this effect, however, was unrelated to PGE2 for quantitative reasons and was probably due to 2 is the major mediator in the coincubation of porcine AEC and human PMN that downregulates neutrophil responses by activating receptors on the neutrophil. A minor contributor in this course of PMN-AEC interaction may be the 15-HETE transcellular pathway. Overall, airway epithelium appears to play an antiinflammatory role by damping the proinflammatory potential of neutrophils. J. Cell. Physiol. 175:268–275, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Human B and T lymphocytes convert leukotriene A4 into leukotriene B4   总被引:1,自引:0,他引:1  
Incubation of human tonsillar B lymphocytes and peripheral blood T lymphocytes with leukotriene A4 led to the formation of leukotriene B4. The purity of these cell suspensions was more than 99%, containing less than 0.5% monocytes. Incubation of purified B or T lymphocytes with the calcium ionophore A23187 did not lead to the formation of any detectable amounts of leukotrienes. Several established cell lines of B and T lymphocytic origin were also found to convert leukotriene A4 into leukotriene B4, showing that monoclonal lymphocytic cells possess leukotriene A4 hydrolase activity.  相似文献   

12.
Weanling male Fisher 344 rats were maintained on low selenium basal and Se-supplemented diets for 38 weeks. A several fold reduction in the glutathione peroxidase activity of the lung and liver tissues in rats maintained on low Se basal diet established their Se-deficient status. Analysis of the supernatants from resting pulmonary alveolar macrophage suspensions showed negligible extracellular release of PGE2, TXB2 and LTB4 in both diet groups. A challenge with opsonized zymosan particles increased the release of the same three arachidonic acid metabolites by several fold in both diet groups. The differences between the two diet groups with respect to the secretion of the products of the cyclooxygenase pathway, PGE2 and TXB2 were negligible. By contrast, a significant reduction in the extracellular release of LTB4 was observed in cells from animals on low selenium basal diet. These results suggest a selective inhibition of LTB4 biosynthesis in pulmonary alveolar macrophages by dietary deficiency of selenium.  相似文献   

13.
Due to its potent chemotactic properties leukotriene B4 is an important mediator of inflammatory reactions. Cultured human kidney mesangial cells converted exogenously added leukotriene B4 efficiently into three different more lipophilic metabolites, two of them probably representing dihydro-leukotriene B4 isomers. This represents an alternative metabolic pathway, in contrast to leukotriene B4 omega-oxidation found in human polymorphonuclear leukocytes. Both dihydro-leukotriene B4 isomers had nearly completely lost their ability to induce leukocyte chemotaxis as compared to leukotriene B4.  相似文献   

14.
Stimulation of human neutrophils with 12-hydroperoxyeicosatetraenoic acid (12-HPETE) led to formation of 5S, 12S-dihydroxyeicosatetraenoic acid (DiHETE), but leukotriene B4 (LTB4) or 5-hydroxyeicosatetraenoic acid (5-HETE) was not detectable by reversed-phase high-performance liquid chromatography analysis. N-formylmethionylleucylphenylalanine (FMLP) induced the additional synthesis of small amounts of LTB4 in 12-HPETE-stimulated neutrophils. The addition of arachidonic acid greatly increased the synthesis of LTB4 and 5-HETE by neutrophils incubated with 12-HPETE. In experiments using [1-14C]arachidonate-labeled neutrophils, little radioactivity was released by 12-HPETE alone or by 12-HPETE plus FMLP, while several radiolabeled compounds, including LTB4 and 5-HETE, were released by A23187. These findings demonstrate that LTB4 biosynthesis by 12-HPETE-stimulated neutrophils requires free arachidonic acid which may be endogenous or exogenous.  相似文献   

15.
Previous studies from our laboratory have led us to conclude that lens cell elongation is caused by an increase in cell volume. This volume increase results from an increase in the potassium content of the cells due to decreased potassium efflux. In contrast, an increase in the volume of most cells triggers a regulatory volume decrease (RVD) that is usually mediated by increased potassium efflux. For this reason, chicken embryo lens epithelial cells were tested to see whether they were capable of typical cell volume regulation. Changes in cell volume during lens fiber differentiation were first estimated by 3H2O water uptake. Cell water increased in proportion to cell length in elongating lens cells. Treatment of epithelial cells cultured in basal medium with dilute or concentrated medium, or with medium containing 50 mM sucrose, resulted in typical volume regulatory responses. Cells lost or gained volume in response to osmotic stress, then returned to their previous volume. In addition, the elongation and increase in cell volume that accompanies lens fiber cell differentiation occurred normally in either hypo- or hypertonic media. This observation showed that the activation of mechanisms to compensate for osmotic stress did not interfere with the increase in volume that accompanies elongation. The ability of elongating cells to volume regulate was also tested. Lens epithelial cells were stimulated to elongate by exposure to embryonic vitreous humor, then challenged with hypotonic medium. These elongating cells regulated their volume as effectively as unstimulated cells. Therefore, cells that were increasing their volume due to reduced potassium efflux could adjust their volume in response to osmotic stress, presumably by increasing potassium efflux. This suggests that the changes in potassium efflux that occur during differentiation and RVD are regulated by distinct mechanisms.  相似文献   

16.
Summary Serially subcultured rat lens epithelial cells grow in different stages, which can be classified according to morphology, chromosome numbers and population kinetics. A lensspecific γ-crystallin appears in the diploid stage, when elongated cell types are observed. One of the β-crystallin bands (pH 5.7) disappears during aging in higher passage numbers of the diploid stage B. A weak band in the β-crystallin region (pH 6.4), which is present in all stages, becomes very intensive in aneuploid cells of stage D, which exhibit a fibroblast-like morphology. The work was supported by Deutsche Forschungsgemeinschaft, Grant Ri 285/3.  相似文献   

17.
Rat lens epithelial cells in vitro   总被引:2,自引:0,他引:2  
Summary Lens epithelial cells from rats aged 5 days were grown in long-term cultures. These cells age, differentiate and transform spontaneously. Morphological observations indicate five different stages (A-E). The epithelial character is lost after the first two passages. Elongated cells appearing afterwards are considered as cells that have started differentiation to fiberlike cells. Big flattened cells are considered as senescent cells that have lost their proliferative capacity. Data from population kinetics also reflect these five stages. Chromosome analysis shows that three of the five stages are no longer diploid. Two alternative modes of spontaneous transformation are possible. The proliferative capacity of rat lens epithelial cells is higher than that of rat embryonic fibroblast systems. The investigations were supported by the Deutsche Forschungsgemeinschaft (Biology of Aging, Grants Ri 285/2 and Ri 285/3).  相似文献   

18.
The seed oil of the plant Ixiolaena brevicompta is a rich source of crepenynic acid (octadec-cis-9-en-12-ynoic acid), which has been linked with extensive sheep mortalities in Western New South Wales and Queensland, Australia. A number of acetylenic fatty acids have been found to interfere with lipid and fatty acid metabolism and inhibit cyclooxygenase and lipoxygenase enzymes in a variety of tissues. We have investigated the effects of crepenynic acid and ximenynic acid (octadec-trans-11-en-9-ynoic acid) on leukotriene B4 and thromboxane B2 production in rat peritoneal leukocytes and compare them with non-acetylenic compounds linoleic and ricinoleic acids. In concentrations ranging from 10 to 100 microM linoleic acid and ricinoleic acid had only minimal effects on leukotriene B4 and thromboxane B2 production in ionophore-stimulated cells. Ximenynic acid gave dose-dependent inhibition of leukotriene B4, thromboxane B2 and 6-ketoprostaglandin F1 alpha production. Ximenynic acid appears to be a more effective inhibitor of leukotriene B4 than crepenynic acid with an IC50 of 60 microM compared to 85 microM. On the other hand, crepenynic acid is a much more effective inhibitor of the cyclooxygenase products, having an IC50 for thromboxane B2 of less than 10 microM. Both acetylenic fatty acids inhibited phospholipase activity in these cells by 40-50% at a concentration of 100 microM but had no inhibitory effect at 10 microM. These results indicate that crepenynic acid and ximenynic acid differentially inhibit the cyclooxygenase and lipoxygenase products of stimulated leukocytes, and that at high doses of these fatty acids the effect on these products may be partially due to inhibition of phospholipase A2.  相似文献   

19.
Specific high-affinity binding sites for [3H]-leukotriene B4 have been identified on membrane preparations from rat and human leukocytes. The rat and human leukocyte membrane preparations show linearity of binding with increasing protein concentration, saturable binding and rapid dissociation of binding by excess unlabelled leukotriene B4. Dissociation constants of 0.5 to 2.5 nM and maximum binding of 5000 fmoles/mg protein were obtained for [3H] leukotriene B4 binding to these preparations. Displacement of [3H]-leukotriene B4 by leukotriene B4 was compared with displacement by leukotriene B3 and leukotriene B5 which differ from leukotriene B4 only by the absence of a double bond at carbon 14 or the presence of an additional double bond at carbon 17, respectively. Leukotriene B3 was shown to be equipotent to leukotriene B4 in ability to displace [3H]-leukotriene B4 from both rat and human leukocyte membranes while leukotriene B5 was 20-50 fold less potent. The relative potencies for the displacement of [3H]-leukotriene B4 by leukotrienes B3, B4 and B5 on rat and human leukocyte membranes were shown to correlate well with their potencies for the induction of the aggregation of rat leukocytes and the chemokinesis of human leukocytes.  相似文献   

20.
When chopped porcine pulmonary arteries were incubated with calcium ionophore A23187 (1) in the presence of indomethacin there was a time dependent generation of a substance which produced contractions of superfused strips of guinea-pig ileum smooth muscle (GPISM) which were indistinguishable from those induced by LTD4. This material however had a different retention time from LTD4 when subjected to HPLC and co-chromatographed with synthetic LTE4. In addition to LTE4 a substance which had properties indistinguishable from those of LTB4 when assayed on a combination of guinea-pig lung parenchymal strips (GPP) and GPISM (2) was generated from the pulmonary artery. This substance co-chromatographed with synthetic LTB4. The adventitia and intima were the richest source of LTE4, the adventitia releasing slightly more than the intima. The output of LTB4 and LTE4 was inhibited by 6,9-deepoxy-6,9-(phenylimino)-delta 6,8 prostaglandin I (U-60,257). Nordihydroguaiaretic acid (NDGA) inhibited the generation of LTE4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号