首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2′,2′-Difluoro-2′-deoxycytidine (dFdC, gemcitabine) is a cytidine analogue active against several solid tumor types, such as ovarian, pancreatic and non-small cell lung cancer. The compound has a complex mechanism of action. Because of the structural similarity of one metabolite of dFdC, dFdUMP, with the natural substrate for thymidylate synthase (TS) dUMP, we investigated whether dFdC and its deamination product 2′,2′-difluoro-2′-deoxyuridine (dFdU) would inhibit TS. This study was performed using two solid tumor cell lines: the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000. The specific TS inhibitor Raltitrexed (RTX) was included as a positive control. Using the in situ TS activity assay measuring the intracellular conversion of [5-3H]-2′-deoxyuridine or [5-3H]-2′-deoxycytidine to dTMP and tritiated water, it was observed that dFdC and dFdU inhibited TS. In A2780 cells after a 4 h exposure to 1 μM dFdC tritium release was inhibited by 50% but did not increase after 24 h, Inhibition was also observed following dFdU at 100 μM. No effect was observed in the dFdC-resistant cell line AG6000; in this cell line only RTX had an inhibitory effect on TS activity. In the A2780 cell line RTX inhibited TS in a time dependent manner. In addition, DNA specific compounds such as 2′-C-cyano-2′-deoxy-1-beta-D-arabino-pentafuranosylcytosine and aphidicoline were utilized to exclude DNA inhibition mediated down regulation of the thymidine kinase.Inhibition of the enzyme resulted in a relative increase of mis-incorporation of [5-3H]-2′-deoxyuridine into DNA. In an attempt to elucidate the mechanism of in situ TS inhibition the ternary complex formation and possible inhibition in cellular extracts of A2780 cells, before and after exposure to dFdC, were determined. With the applied methods no proof for formation of a stable complex was found. In simultaneously performed experiments with 5FU such a complex formation could be demonstrated. However, using purified TS it was demonstrated that dFdUMP and not dFdCMP competitively inhibited TS with a Ki of 130 μM, without ternary complex formation. In conclusion, in this paper we reveal a new target of dFdC: thymidylate synthase.  相似文献   

2.
4-nitrophenyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha- and beta-D-mannopyranosides were prepared from methyl 4,6-O-benzylidene-alpha-D-glucopyranoside and 1,3,4,6-tetra-O-acetyl-alpha-D-glucopyranose, respectively. Chemoselective reduction of both azides with hydrogen sulfide readily afforded 4-nitrophenyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-alpha-D- and -beta-D-mannopyranosides in higher yields than reduction with triphenylphosphine or a polymer-supported triarylphosphine. Subsequent de-O-acetylation yielded 4-nitrophenyl 2-acetamido-2-deoxy-alpha-D-mannopyranoside and 4-nitrophenyl 2-acetamido-2-deoxy-beta-D-mannopyranoside in 20% and 44% overall yields, respectively.  相似文献   

3.
以拟南芥为材料,利用药理学实验,结合分光光度法和激光共聚焦显微技术,研究了Ca2+在硫化氢(H2S)诱导拟南芥气孔关闭过程中的作用及其与过氧化氢(H2O2)的关系。结果表明: H2S诱导气孔关闭, Ca2+螯合剂EGTA和质膜Ca2+通道阻断剂硝苯地平(Nif)能不同程度抑制H2S诱导的气孔关闭,而内质网钙泵阻断剂毒胡萝卜素(Thaps)对H2S的作用无显著影响。由此推测, Ca2+参与调节H2S诱导的拟南芥气孔关闭过程,且胞质中Ca2+来源于胞外Ca2+的内流。另外, H2S诱导拟南芥叶片NADPH氧化酶基因AtRBOHD和AtRBOHF以及细胞壁过氧化物酶基因AtPRX34表达增强,促进叶片和保卫细胞中H2O2积累, EGTA对此起抑制作用,而外源CaCl2处理上调AtRBOHD、AtRBOHF和AtPRX34的表达。表明Ca2+可能位于H2O2上游参与H2S诱导的拟南芥气孔关闭过程。  相似文献   

4.
拟南芥血红蛋白1(AtGLB1)与过氧化氢的相互作用   总被引:1,自引:0,他引:1  
拟南芥的血红蛋白1(AtGLB1)属于非共生的血红蛋白。在低氧胁迫中对植物细胞中过氧化氢(H2O2)内稳态的维持起了很重要的作用。为了检测AtGLB1与H2O2能否直接相互作用,我们扩增了拟南芥的AtGLB1基因,并将其克隆到原核表达质粒pET32a中,测序鉴定正确后转化大肠杆菌BL21。IPTG诱导目的蛋白表达后,镍离子亲和层析柱(Ni2+-NTA)纯化了靶蛋白。体外表达的氧合的AtGLB1能与H2O2直接相互作用。因此,与H2O2反应可能是AtGLB1清除低氧胁迫下产生的H2O2的一种方式。  相似文献   

5.
[2S-2-2H]- and [2R-2-2H]hexadecanoic acids were synthesized in overall yields of 59–67%. Methyl(2R)-2-hydroxyhexadecanoate, from the acid produced by Hansenula sydowiorum, was converted to the p-toluenesulphonate, reduced to trideutero alcohol with lithium aluminium deuteride and oxidized to [2S-2-2H]hexadecanoic acid. Methyl (2S)-2-chlorohexadecanoate, which was a by-product of tosylation and was also prepared by chlorinatioon of the hydroxy ester with thionyl chloride, on reduction and oxidation as before gave [2R-2-2H]-hexadecanoic acid. Intermediates were fully characterized, isotopic purity was 97% and optical purity was maintained throughout the syntheses. Attempts to reduce the tosyl or chloro groups, only, with sodium borodeuteride gave low yields probably due to preferential reduction of the ester group; 1,2-epoxyhexadecane was obtained from the tosylate and 2-chlorohexadecan-1-ol from the chloro ester.  相似文献   

6.
7.
H2O2对水稻Rubisco稳定性的影响   总被引:8,自引:0,他引:8  
H2 O2 浓度低于 2 0mmol·L-1时 ,Rubisco分子稳定 ;高于 2 0mmol·L-1则Rubisco的大亚基之间发生交联 ,全酶发生聚沉。H2 O2 处理后 ,Rubisco表面巯基数目减少 ,对两种蛋白水解酶尤其是胰蛋白酶的敏感性增强 ,大亚基水解明显增加。H2 O2 处理只会增加Rubisco大亚基的水解程度 ,不会造成新的水解位点  相似文献   

8.
皮肤寻常疣的发生与多种基因型别HPV的感染密切相关.本研究利用PCR方法对1例临床罕见的寻常疣患者感染的HPV-2毒株LCR及E2基因序列进行扩增、测序,分别构建含HPV-2变异株及原毒株LCR的重组CAT基因报导质粒pBLCAT-LCR和表达突变及野生型E2蛋白的重组真核表达质粒pcDNA3.1-E2,通过瞬时转染HeLa细胞,研究变异株启动子活性及突变E2蛋白的转录抑制作用.结果显示,患者感染的HPV-2变异株LCR及E2基因均存在多处点突变.变异株早期启动子活性明显高于原毒株;突变的E2蛋白转录抑制作用较野生型E2蛋白显著降低;变异株LCR上E2结合位点核苷酸的突变明显降低E2蛋白对病毒早期启动子的抑制作用.提示HPV-2变异株启动子活性增强及突变E2蛋白转录抑制作用的降低与这一罕见巨大寻常疣临床表型之间存在着重要的联系.  相似文献   

9.
10.
过氧化氢和氯化钙对香蕉幼苗抗寒性的影响   总被引:15,自引:0,他引:15  
用H2O2和CaCl2单独或混合使用的方法喷洒香蕉幼苗,并置于低温培养箱中进行冷胁迫处理,发现它们可提高香蕉幼苗冷胁迫期间叶片POD活性,降低细胞质泄漏,增加可溶性糖含量及减缓叶绿素降解,从而减轻冷伤害程度。H2O2和CaCl2混合处理的效果优于单独处理,二者有协同效应。  相似文献   

11.
Ca2+和钙调素对H2O2诱导的玉米幼苗耐热性的调控   总被引:7,自引:0,他引:7  
外源H2O2预处理提高了玉米幼苗内源H2O2的含量和钙调素(CaM)活性,缓解了高温处理过程中CaM活性的下降,增加了玉米幼苗在高温胁迫下的存活率.H2O2诱导的玉米幼苗耐热性的形成可被外源Ca2 处理所加强,被Ca2 螯合剂EGTA、质膜Ca2 通道阻塞剂La3 、胞内Ca2 通道阻断剂RR(钌红),以及CaM抑制剂CPZ(氯丙嗪)和TFP(三氟拉嗪)所抑制,表明Ca2 和CaM参与了H2O2诱导的玉米幼苗耐热性形成的调控.  相似文献   

12.
通过化学诱变剂甲基磺酸乙酯(EMS)诱变模式植物拟南芥(Arabidopsis thaliana)获得突变体筛选群体.在5 mmol/L H2O2胁迫下,以叶片温度差异为筛选指标,利用远红外成像技术进行突变体的筛选,获得了对H2O2不敏感突变体hpi1(hydrogen peroxide-insensitive1)和敏感突变体hps1(hydrogen peroxide-sensitive1).进一步研究发现,两种突变均为单基因隐性突变,气孔密度同野生型一样,而叶片温度、气孔开度和叶片失水率则有明显的差异.种子萌发实验表明,hpi1对甘露醇(Man)和NaCl不敏感而对ABA敏感,hps1则对3种胁迫都表现出敏感特性.  相似文献   

13.
流加H_2O_2对提高供氧及微生物代谢的影响   总被引:6,自引:0,他引:6  
在大部分的需氧发酵中 ,供氧通常是通过向发酵液通气来实现的。在某一临界细胞浓度时 ,供氧不能满足细胞生长所需 ,成为细胞生长的限制基质 ,进而导致细胞密度和产品浓度较低[1] 。传统方法改善供氧主要是从反应器设计和工艺等方面考虑 ,如增大搅拌速率 ,提高通气速率 ,使用纯氧通气 ,提高罐压等。但由于氧气的溶解度低以及机械和操作上的原因 ,其操作范围有限。近年来出现了一些新的方法来改善发酵过程中的供氧问题 ,如加入氧载体[1~ 3 ] ,流加H2 O2[4~ 7] ,与藻类共培养[8~ 10 ] ,以及通过基因克隆转入携带氧的基因等方法。本文将着…  相似文献   

14.
A series of 3-(2-methoxytetrahydrofuran-2-yl)pyrazoles (4–10) was synthesized. The compounds were evaluated for their ability to inhibit cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) activity in human whole blood (HWB). The compound, 5-(4-methanesulfonylphenyl)-3-(2-methoxytetrahydrofuran-2-yl)-1-p-tolyl-1H-pyrazole 5 showed potent and selective COX-2 inhibition (IC50 for COX-1: >100 μM and COX-2: 1.2 μM).  相似文献   

15.
TRAF2 plays a central role in TNF-induced signalling to NF-κB and JNK/p38 MAPK. To better understand the molecular mechanisms that mediate this dual function of TRAF2, we performed a yeast two-hybrid screening for TRAF2 interacting proteins using the Sos recruitment system. This resulted in the identification of the E3 ubiquitin ligase Smurf2 as a TRAF2 binding protein. TRAF2 overexpression was shown to trigger Smurf2 ubiquitination and the formation of a TNF-R2/Smurf2 complex. Smurf2 on its turn promoted TNF-R2 ubiquitination and the relocalization of TNF-R2 as well as TRAF2 to a detergent-insoluble cell fraction. This was associated with enhanced TNF-R2-induced JNK activation, whereas TNF-R2-induced NF-κB activation remained unaffected. These results suggest an important role for Smurf2 binding to TRAF2 in determining specific signalling outputs of TNF-R2.  相似文献   

16.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.  相似文献   

17.
Diabetic nephropathy (DN) is a severe diabetic microvascular complication with high mortality. Long noncoding RNAs (lncRNAs) are characterized as important regulators of various biological processes by emerging researches, whereas the molecular mechanisms by which lncRNAs participate in DN progression need to be further clarified. Herein, we conducted a study on the regulatory role in DN of an lncRNA named antisense of Igf2r non‐protein‐coding RNA (Airn). Airn expression was downregulated in renal tissues of diabetic mice, and was negatively related with DN development. Besides, Airn downregulation was detected in high‐glucose‐stimulated podocytes, resulting in poorer cell viability, a higher tendency to cell apoptosis, and a deficiency of laminin level, while Airn overexpression could significantly alleviate these deleterious effects. Mechanistically, using RNA immunoprecipitation and RNA pull‐down assays, we found that Airn could bind to the RNA‐binding protein Igf2bp2, thus facilitating translation of Igf2 and Lamb2 to maintain normal podocyte viability and glomerular barrier function. Collectively, our results demonstrate the protective role of lncRNA Airn in podocytes against DN, providing a new insight into DN pathogenesis and molecular therapy.  相似文献   

18.
小球藻对水溶液中Zn2+、Cd2+的吸附   总被引:2,自引:0,他引:2  
对小球藻生物吸附Zn^2 ,Cd^2 的影响因素进行了研究,发现小球藻对Zn^2 ,Cd^2 的生物吸附主要经历了快速的物理吸附和缓慢的化学吸附两个步骤;pH值是影响Zn^2 ,Cd^2 生物吸附的一个重要因素,pH值为6-7时,小球藻对Zn^2 ,Cd^2 的去除率较高,在实验条件下去除率可达87%以上;研究还表明,小球藻干粉比新鲜藻能富集更多的Zn^2 ,Cd^2 。用Freundlich方程模拟吸附等温线,拟合良好。  相似文献   

19.
PPP2R2A是PP2A磷酸酶的调控亚基之一,以往的研究报道显示,PPP2R2A可促进肿瘤细胞生存和生长。本研究通过串联亲和纯化联合HPLC-Chip-ESI/MS/MS筛选PPP2R2A的相互作用蛋白质,分析结果显示,L-谷氨酰胺-D-果糖-6-磷酸转氨酶1(Glutamine-fructose-6-phosphate transaminase 1,GFPT1)和L-谷氨酰胺-D-果糖-6-磷酸转氨酶2(Glutamine-fructose-6-phosphate transaminase 2,GFPT2)是PPP2R2A可能的结合蛋白。通过免疫荧光共定位、GST Pull-down和免疫共沉淀等方法,进一步确认了PPP2R2A和GFPT1及GFPT2的相互结合。通过shRNA下调PPP2R2A后,GFPT2的磷酸化水平显著增加,但GFPT1的磷酸化水平改变不明显。GFPT2是O-GlcNAC糖基化修饰通路中的一个限速酶,在乳腺癌细胞MDA-MB-231中下调PPP2R2A后,蛋白质O-GlcNAC糖基化修饰水平增加。这些结果表明,PPP2R2A可直接结合GFPT2,并导致其去磷酸化,进而影响细胞内O-GlcNAC糖基化修饰。  相似文献   

20.
Abstract Pseudomonas putida strain CLB 250 (DSM 5232) utilized 2-bromo-, 2-chloro- and 2-fluorobenzoate as sole source of carbon and energy. Degradation is suggested to be initiated by a dioxygenase liberating halide in the first catabolic step. After decarboxylation and rearomatization catechol is produced as a central metabolite which is degraded via the ortho-pathway. After inhibition of ring cleavage activities with 3-chlorocatechol, 2-chlorobenzoate was transformed to catechol in nearly stoichiometric amounts. Other ortho -substituted benzoates like anthranilate and 2-methoxybenzoate seem to be metabolized via the same route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号