首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein design is the field of synthetic biology that aims at developing de novo custom‐made proteins and peptides for specific applications. Despite exploring an ambitious goal, recent computational advances in both hardware and software technologies have paved the way to high‐throughput screening and detailed design of novel folds and improved functionalities. Modern advances in the field of protein design for small molecule targeting are described in this review, organized in a step‐by‐step fashion: from the conception of a new or upgraded active binding site, to scaffold design, sequence optimization, and experimental expression of the custom protein. In each step, contemporary examples are described, and state‐of‐the‐art software is briefly explored.  相似文献   

2.
Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two‐component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high‐level β‐lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that β‐lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to β‐lactams. We propose that VxrAB reduces antibiotic‐induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against β‐lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism''s ability to counteract diverse antibiotic‐induced stresses promotes high‐level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.  相似文献   

3.
Streptomyces is well known for synthesis of many biologically active secondary metabolites, such as polyketides and non‐ribosomal peptides. Understanding the coupling mechanisms of primary and secondary metabolism can help develop strategies to improve secondary metabolite production in Streptomyces. In this work, Streptomyces albus ZD11, an oil‐preferring industrial Streptomyces strain, was proved to have a remarkable capability to generate abundant acyl‐CoA precursors for salinomycin biosynthesis with the aid of its enhanced β‐oxidation pathway. It was found that the salinomycin biosynthetic gene cluster contains a predicted 3‐hydroxyacyl‐CoA dehydrogenase (FadB3), which is the third enzyme of β‐oxidation cycle. Deletion of fadB3 significantly reduced the production of salinomycin. A variety of experimental evidences showed that FadB3 was mainly involved in the β‐oxidation pathway rather than ethylmalonyl‐CoA biosynthesis and played a very important role in regulating the rate of β‐oxidation in S. albus ZD11. Our findings elucidate an interesting coupling mechanism by which a PKS biosynthetic gene cluster could regulate the β‐oxidation pathway by carrying β‐oxidation genes, enabling Streptomyces to efficiently synthesize target polyketides and economically utilize environmental nutrients.

Comprehensive understanding the relationship between primary metabolism and secondary metabolism is important for high‐efficiency production of antibiotics in Streptomyces species. In contrast to the well‐known pattern that primary metabolic processes regulate secondary metabolism, this study reports that a secondary biosynthetic pathway can reversely regulate primary metabolic process by carrying a key gene of the primary metabolic pathway.  相似文献   

4.
Exploring vegetation distribution spatial patterns facilitates understanding how biodiversity addresses the potential threat of future climate variability, especially for highly diverse and threatened tropical plant communities, but few empirical studies have been performed. Dacrydium pectinatum is a constructive and endangered species in the tropical mountain forests of Hainan Island, China. In this study, sixty‐eight 30 m × 30 m permanent plots of D. pectinatum were investigated, and species‐based and phylogenetic‐based methods were used to analyze the α‐ and β‐diversity pattern variation and its key drivers. Our study showed that species and phylogenetic α‐diversity patterns are different on a local scale. However, on a regional scale, the variations in the two α‐diversity patterns tend to converge, and they decrease with increasing elevation. The phylogenetic structure changes from overdispersion to convergence with increasing elevation. Soil (SOM, TP, AP), topography (EL, SL), and stand (CD) factors and α‐diversity showed close correlations. Species and phylogenetic β‐diversity have significant positive correlations with changing environmental distance and geographical distance; however, as a representative form of habitat heterogeneity, elevation distance has a greater impact on β‐diversity changes than geographical distance. In conclusion, the α‐ and β‐diversity patterns of the D. pectinatum community are mainly related to habitat filtering, especially in high‐elevation areas, and the colonization history of various regions also affects the formation of diversity patterns. Species‐based and phylogenetic‐based methods robustly demonstrated the key role of the habitat filtering hypothesis in community assembly. We believe that more plant diversity patterns need to be explored to understand the biodiversity formation mechanisms in tropical forests. We also recommend strengthening the construction and management of nature reserves to help address the biodiversity loss crisis in endangered tropical plant communities.  相似文献   

5.
Side chain prediction is an integral component of computational antibody design and structure prediction. Current antibody modelling tools use backbone‐dependent rotamer libraries with conformations taken from general proteins. Here we present our antibody‐specific rotamer library, where rotamers are binned according to their immunogenetics (IMGT) position, rather than their local backbone geometry. We find that for some amino acid types at certain positions, only a restricted number of side chain conformations are ever observed. Using this information, we are able to reduce the breadth of the rotamer sampling space. Based on our rotamer library, we built a side chain predictor, position‐dependent antibody rotamer swapper (PEARS). On a blind test set of 95 antibody model structures, PEARS had the highest average χ1 and accuracy (78.7% and 64.8%) compared to three leading backbone‐dependent side chain predictors. Our use of IMGT position, rather than backbone ϕ/ψ, meant that PEARS was more robust to errors in the backbone of the model structure. PEARS also achieved the lowest number of side chain–side chain clashes. PEARS is freely available as a web application at http://opig.stats.ox.ac.uk/webapps/pears .  相似文献   

6.
Xylonolactonase Cc XylC from Caulobacter crescentus catalyzes the hydrolysis of the intramolecular ester bond of d‐xylonolactone. We have determined crystal structures of Cc XylC in complex with d‐xylonolactone isomer analogues d‐xylopyranose and (r)‐(+)‐4‐hydroxy‐2‐pyrrolidinone at high resolution. Cc XylC has a 6‐bladed β‐propeller architecture, which contains a central open channel having the active site at one end. According to our previous native mass spectrometry studies, Cc XylC is able to specifically bind Fe2+. The crystal structures, presented here, revealed an active site bound metal ion with an octahedral binding geometry. The side chains of three amino acid residues, Glu18, Asn146, and Asp196, which participate in binding of metal ion are located in the same plane. The solved complex structures allowed suggesting a reaction mechanism for intramolecular ester bond hydrolysis in which the major contribution for catalysis arises from the carbonyl oxygen coordination of the xylonolactone substrate to the Fe2+. The structure of Cc XylC was compared with eight other ester hydrolases of the β‐propeller hydrolase family. The previously published crystal structures of other β‐propeller hydrolases contain either Ca2+, Mg2+, or Zn2+ and show clear similarities in ligand and metal ion binding geometries to that of Cc XylC. It would be interesting to reinvestigate the metal binding specificity of these enzymes and clarify whether they are also able to use Fe2+ as a catalytic metal. This could further expand our understanding of utilization of Fe2+ not only in oxidative enzymes but also in hydrolases.  相似文献   

7.
Fucosyllactoses (FL), including 2′‐fucosyllactose (2′‐FL) and 3‐fucosyllactose (3‐FL), have garnered considerable interest for their value in newborn formula and pharmaceuticals. In this study, an engineered Escherichia coli was developed for high‐titer FL biosynthesis by introducing multi‐level metabolic engineering strategies, including (1) individual construction of the 2′/3‐FL‐producing strains through gene combination optimization of the GDP‐L‐fucose module; (2) screening of rate‐limiting enzymes (α‐1,2‐fucosyltransferase and α‐1,3‐fucosyltransferase); (3) analysis of critical intermediates and inactivation of competing pathways to redirect carbon fluxes to FL biosynthesis; (4) enhancement of the catalytic performance of rate‐limiting enzymes by the RBS screening, fusion peptides and multi‐copy gene cloning. The final strains EC49 and EM47 produced 9.36 g/L for 2′‐FL and 6.28 g/L for 3‐FL in shake flasks with a modified‐M9CA medium. Fed‐batch cultivations of the two strains generated 64.62 g/L of 2′‐FL and 40.68 g/L of 3‐FL in the 3‐L bioreactors, with yields of 0.65 mol 2′‐FL/mol lactose and 0.67 mol 3‐FL/mol lactose, respectively. This research provides a viable platform for other high‐value‐added compounds production in microbial cell factories.

An engineered Escherichia coli was developed for high‐titer FL biosynthesis by introducing multi‐level metabolic engineering strategies. Combined with the optimization of metabolic pathways and the performance improvement of rate‐limiting enzymes, 64.62 g/L of 2 ''‐FL and 40.68 g/L of 3‐FL were finally obtained in the 3‐L bioreactors.  相似文献   

8.
Despite extensive research, the mechanisms underlying rhabdomyolysis‐induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis‐induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC‐δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC‐δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC‐δ‐mediated myoglobin‐induced cell apoptosis and the expression of TNF‐α and IL1‐β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC‐δ in renal cell apoptosis and suggests that PKC‐δ is a viable therapeutic target for rhabdomyolysis‐induced AKI.  相似文献   

9.
Amyloid‐beta (Aβ) oligomer is known to contribute to the pathophysiology of age‐related macular degeneration. Herein, we aimed to elucidate the in vivo and in vitro effects of Aβ1‐42 application on retinal morphology in rats. Our in vivo studies revealed that intracerebroventricular administration of Aβ1‐42 oligomer caused dysmorphological changes in both retinal ganglion cells and retinal pigment epithelium. In addition, in vitro studies revealed that ARPE‐19 cells following Aβ1‐42 oligomer application had decreased viability along with apoptosis and decreased expression of the tight junction proteins, increased expression of both phosphor‐AKT and phosphor‐GSK3β and decreased expression of both SIRT1 and β‐catenin. Application of conditioned medium (CM) obtained from mesenchymal stem cells (MSC) protected against Aβ1‐42 oligomer‐induced retinal pathology in both rats and ARPE‐19 cells. In order to explore the potential role of peptides secreted from the MSCs, we applied mass spectrometry to compare the peptidomics profiles of the MSC‐CM. Gene ontology enrichment analysis and String analysis were performed to explore the differentially expressed peptides by predicting the functions of their precursor proteins. Bioinformatics analysis showed that 3‐8 out of 155–163 proteins in the MSC‐CM maybe associated with SIRT1/pAKT/pGSK3β/β‐catenin, tight junction proteins, and apoptosis pathway. In particular, the secretomes information on the MSC‐CM may be helpful for the prevention and treatment of retinal pathology in age‐related macular degeneration.  相似文献   

10.
T cells bearing γδ antigen receptors have been investigated as potential treatments for several diseases, including malignant tumours. However, the clinical application of γδT cells has been hampered by their relatively low abundance in vivo and the technical difficulty of inducing their differentiation from hematopoietic stem cells (HSCs) in vitro. Here, we describe a novel method for generating mouse γδT cells by co‐culturing HSC‐enriched bone marrow cells (HSC‐eBMCs) with induced thymic epithelial cells (iTECs) derived from induced pluripotent stem cells (iPSCs). We used BMCs from CD45.1 congenic C57BL/6 mice to distinguish them from iPSCs, which expressed CD45.2. We showed that HSC‐eBMCs and iTECs cultured with IL‐2 + IL‐7 for up to 21 days induced CD45.1+ γδT cells that expressed a broad repertoire of Vγ and Vδ T‐cell receptors. Notably, the induced lymphocytes contained few or no αβT cells, NK1.1+ natural killer cells, or B220+ B cells. Adoptive transfer of the induced γδT cells to leukemia‐bearing mice significantly reduced tumour growth and prolonged mouse survival with no obvious side effects, such as tumorigenesis and autoimmune diseases. This new method suggests that it could also be used to produce human γδT cells for clinical applications.  相似文献   

11.
Lipopolysaccharide (LPS)‐induced sepsis‐associated acute kidney injury (SA‐AKI) is a model of clinical serious care syndrome, with high morbidity and mortality. Tacrolimus (TAC), a novel immunosuppressant that inhibits inflammatory response, plays a pivotal role in kidney diseases. In this study, LPS treated mice and cultured podocytes were used as the models of SA‐AKI in vivo and in vitro, respectively. Medium‐ and high‐dose TAC administration significantly attenuated renal function and renal pathological manifestations at 12, 24 and 48 h after LPS treatment in mice. Moreover, the Toll‐like receptor 4 (TLR4)/myeloid differential protein‐88 (MyD88)/nuclear factor‐kappa (NF‐κB) signalling pathway was also dramatically inhibited by medium‐ and high‐dose TAC administration at 12, 24 and 48 h of LPS treatment mice. In addition, TAC reversed LPS‐induced podocyte cytoskeletal injury and podocyte migratory capability. Our findings indicate that TAC has protective effects against LPS‐induced AKI by inhibiting TLR4/MyD88/NF‐κB signalling pathway and podocyte dysfunction, providing another potential therapeutic effects for the LPS‐induced SA‐AKI.  相似文献   

12.
Cellular proteins begin to fold as they emerge from the ribosome. The folding landscape of nascent chains is not only shaped by their amino acid sequence but also by the interactions with the ribosome. Here, we combine biophysical methods with cryo‐EM structure determination to show that folding of a β‐barrel protein begins with formation of a dynamic α‐helix inside the ribosome. As the growing peptide reaches the end of the tunnel, the N‐terminal part of the nascent chain refolds to a β‐hairpin structure that remains dynamic until its release from the ribosome. Contacts with the ribosome and structure of the peptidyl transferase center depend on nascent chain conformation. These results indicate that proteins may start out as α‐helices inside the tunnel and switch into their native folds only as they emerge from the ribosome. Moreover, the correlation of nascent chain conformations with reorientation of key residues of the ribosomal peptidyl‐transferase center suggest that protein folding could modulate ribosome activity.  相似文献   

13.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson''s disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from αSyn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human αSyn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2 cre)‐mediated depletion of autophagyrelated gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in αSyn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.  相似文献   

14.
15.
The binding of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein to the angiotensin‐converting enzyme 2 (ACE2) receptor expressed on the host cells is a critical initial step for viral infection. This interaction is blocked through competitive inhibition by soluble ACE2 protein. Therefore, developing high‐affinity and cost‐effective ACE2 mimetic ligands that disrupt this protein–protein interaction is a promising strategy for viral diagnostics and therapy. We employed human and plant defensins, a class of small (2–5 kDa) and highly stable proteins containing solvent‐exposed alpha‐helix, conformationally constrained by two disulfide bonds. Therefore, we engineered the amino acid residues on the constrained alpha‐helix of defensins to mimic the critical residues on the ACE2 helix 1 that interact with the SARS‐CoV‐2 spike protein. The engineered proteins (h‐deface2, p‐deface2, and p‐deface2‐MUT) were soluble and purified to homogeneity with a high yield from a bacterial expression system. The proteins demonstrated exceptional thermostability (Tm 70.7°C), high‐affinity binding to the spike protein with apparent K d values of 54.4 ± 11.3, 33.5 ± 8.2, and 14.4 ± 3.5 nM for h‐deface2, p‐deface2, and p‐deface2‐MUT, respectively, and were used in a diagnostic assay that detected SARS‐CoV‐2 neutralizing antibodies. This work addresses the challenge of developing helical ACE2 mimetics by demonstrating that defensins provide promising scaffolds to engineer alpha‐helices in a constrained form for designing of high‐affinity ligands.  相似文献   

16.
Histidine phosphorylation is an emerging noncanonical protein phosphorylation in animals, yet its physiological role remains largely unexplored. The protein histidine phosphatase (PHPT1) was recently identified for the first time in mammals. Here, we report that PHIP‐1, an ortholog of PHPT1 in Caenorhabditis elegans, promotes axon regeneration by dephosphorylating GPB‐1 Gβ at His‐266 and inactivating GOA‐1 Goα signaling, a negative regulator of axon regeneration. Overexpression of the histidine kinase NDK‐1 also inhibits axon regeneration via GPB‐1 His‐266 phosphorylation. Thus, His‐phosphorylation plays an antiregenerative role in C. elegans. Furthermore, we identify a conserved UNC‐51/ULK kinase that functions in autophagy as a PHIP‐1‐binding protein. We demonstrate that UNC‐51 phosphorylates PHIP‐1 at Ser‐112 and activates its catalytic activity and that this phosphorylation is required for PHIP‐1‐mediated axon regeneration. This study reveals a molecular link from ULK to protein histidine phosphatase, which facilitates axon regeneration by inhibiting trimeric G protein signaling.  相似文献   

17.
γδ T cells are a conserved population of lymphocytes that contributes to anti‐tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL‐2 or IL‐15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA‐181a as a key modulator of human γδ T cell differentiation. We observe that miR‐181a is highly expressed in patients with prostate cancer and that this pattern associates with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR‐181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR‐181a overexpression restricts their levels of NKG2D and TNF‐α. Upon in silico analysis, we identify two miR‐181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR‐181a as critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next‐generation immunotherapies.  相似文献   

18.
The aggregation of β‐amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer''s disease pathogenesis. Aβ42 is one of several Aβ peptides, all of Aβ30 to Aβ43 that are produced as a result of γ‐secretase–mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ‐Secretase modulators (GSMs) represent a promising class of Aβ42‐lowering anti‐amyloidogenic compounds for the treatment of AD. Gamma‐secretase modulators change the relative proportion of secreted Aβ peptides, while sparing the γ‐secretase–mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ‐secretase cleavage of three γ‐secretase substrates, E‐cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ‐secretase–dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ‐secretase processing of EphA4 and EphB2 results in the release of several Aβ‐like peptides, but that only the production of Aβ‐like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aβ modulation. Collectively, these results suggest that GSMs are selective for γ‐secretase–mediated Aβ production.  相似文献   

19.
Control of plant viruses by cross‐protection is limited by the availability of effective protective strains. Incorporation of an NIa‐protease processing site in the extreme N‐terminal region of the helper component protease (HC‐Pro) of turnip mosaic virus (TuMV) resulted in a mutant virus TuHNDI that induced highly attenuated symptoms. Recombination analysis verified that two variations, F7I mutation and amino acid 7‐upstream‐deletion, in HC‐Pro co‐determined TuHNDI attenuation. TuHNDI provided complete protection to Nicotiana benthamiana and Brassica campestris subsp. chinensis plants against infection by the severe parental strain. Aphid transmission tests revealed that TuHNDI was not aphid‐transmissible. An RNA silencing suppression (RSS) assay by agroinfiltration suggested the RSS‐defective nature of the mutant HC‐Pro. In the context (amino acids 3–17) encompassing the two variations of HC‐Pro, we uncovered an FWKG−α‐helix 1 (αH1) element that influenced the functions of aphid transmission and RSS, whose motifs were located far downstream. We further demonstrated that HC‐Pro F7 was a critical residue on αH1 for HC‐Pro functions and that reinstating αH1 in the RSS‐defective HC‐Pro of TuHNDI restored the protein''s RSS function. Yeast two‐hybrid and bimolecular fluorescence complementation assays indicated the FWKG−αH1 element as an integral part of the HC‐Pro self‐interaction domain. The possibility of regulation of the mechanistically independent functions of RSS and aphid transmission by the FWKG−αH1 element is discussed. Extension of TuMV HC‐Pro FWKG−αH1 variations to another potyvirus, zucchini yellow mosaic virus, also generated nonaphid‐transmissible cross‐protective mutant viruses. Hence, the modification of the FWKG−αH1 element can generate effective attenuated viruses for the control of potyviruses by cross‐protection.  相似文献   

20.
BNIP3 is a mitophagy receptor with context‐dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient’s survival and depletion of BNIP3 in B16‐F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2‐mediated downregulation of HIF‐1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3‐deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4‐mediated ferritinophagy, which fostered PHD2‐mediated HIF‐1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF‐1α levels in BNIP3‐depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF‐1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro‐tumorigenic HIF‐1α glycolytic program in melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号