首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are presented from experimental studies of electromagnetic emission and plasma oscillations in the plasma-frequency range in the Octupole Galathea confinement system. Experiments are performed in the electric-discharge mode at low magnetic fields (the barrier field is 0.002–0.01 T); the working gas is argon or hydrogen. It is found that the most intense microwave oscillations at frequencies of 1–5 GHz are excited near the plasma axis and in the magnetic-barrier region. The oscillations are excited by the discharge current and decay after the voltage is switched off. The experiments show that microwave oscillations excited in the magnetic-barrier region are responsible for the small value of the energy confinement time in the system.  相似文献   

2.
Microwave energy radiation is widely used as a method for rapidly sacrificing small laboratory animals so that measurements of endogenous levels of labile neurochemical substances can be assessed after various drug treatments or pharmacological maneuvers. Several factors are important to insure that microwave energy is efficiently coupled to the rodent brain, including: the frequency of microwave radiation, the size of the waveguide for the propagation of the energy, the tuning of the waveguide system, the placement of the animal at the point of maximum power within the waveguide, the amount of power which is delivered, the time during which the power is delivered, and whether the animal is restrained during the microwave protocol.  相似文献   

3.
Summary The average dose rate and oxygen consumption rate of an individual mouse in a small holder during exposure to 2450 MHz CW microwave radiation are determined. The environmental conditions are 24° C temperature, 55% relative humidity, and 78 ml/min airflow. A forward power of 1.7 W resulted in the average dose rates of 31.0 mW/g, and 23.6 mW/g respectively, for the animals irradiated in the small, and the large holders. The results support the hypothesis that previously observed reduction in microwave energy absorption during irradiation is due to the orientation and positioning of the animal's body with respect to the microwave field. Relatively higher rate of oxygen consumption of the tightly confined sham-irradiated animals in comparison to that of the animals in the large holder is observed. Although a decrease in oxygen consumption rate is observed during exposure for the microwave irradiated animals in the small holder, the magnitude of this decrease is not more than that of the animals irradiated in the large holder. Thus the lack of reduction in the absorption of microwave energy is not compensated by a correspondingly large decrease in oxygen consumption, resulting in a larger heat load and perhaps larger stress to animals confined in the small holder.  相似文献   

4.
Summary In recent years, the microwave oven has been increasingly used in the pathology laboratory for processing of tissue for diagnostic purposes with a remarkable reduction in processing time and also reports of excellent morphology and immunohistochemistry. We evaluated some of these processes on post mortem bone marrow trephine biopsies and describe a novel way of processing these biopsies in the microwave oven.  相似文献   

5.
A simple device is developed for mini-scale electrofocusing of proteins. The main apparatus consists of only two glass tubes joined by a small tubing. No special cooling system, stopcocks, stands, etc., are needed. Even the need for a peristaltic pump for fractionation is eliminated. The apparatus does not require very high voltages and the amount of Ampholines is drastically reduced. The model can be used for analytical as well as semi-quantitative purposes.  相似文献   

6.
Rural populations often depend on small reservoirs for their water supply. These are not natural aquatic system but are designed to serve specific purposes and provide the means to utilize water in a variety of useful and efficient ways. Water from these sources is not only utilized for drinking purposes, but also for commercial and industrial use. Though reservoirs are constructed, they are considered as an intermediate between a river and a lake. Thus limnological characteristics of this hybrid system have been of great interest to ecologists and researchers. Several limnological attributes regarding water quality, plankton abundance, fish population are been discussed in this review article. Ecological studies on global and Indian perspective are the major highlight of this review. A few modeling approaches are also discussed which are commonly used globally to preserve and manage the pristine aquatic nature of this hybrid ecosystem.  相似文献   

7.
This communication describes the invention and further development of the first 96-well solid-phase extraction system and the original purposes to which it was put. We also describe the adaption of this system for bioanalysis of pharmaceutically active small molecules and the needs underlying it. The system has become a world-wide standard for high-throughput bioanalysis and has been extended by others to include, for example, disk-phase extraction and supported liquid-liquid extraction, as well as 384-well systems. The factors that enabled this leap forward in productivity are discussed.  相似文献   

8.
A minicomputer-based system was designed to control the microwave (2.45-GHz) power to four local hyperthermia applicators. Errors in temperature measurement, due to electromagnetic field interactions with small thermocouple probes, are minimized by sampling the temperature only when the microwave power is off. The programmable controller can regulate the temperature in tumors in 0.1 °C increments from 30 to 60 °C. This technique reduces temperature differences throughout the tumor at steady state to less than 0.4 °C and prevents skin burns.  相似文献   

9.
This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators — a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes.  相似文献   

10.
Adair RK 《Biophysical journal》2002,82(3):1147-1152
Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.  相似文献   

11.
Bioreactors for 3-dimensional high-density culture of human cells   总被引:1,自引:0,他引:1  
Matsuura T 《Human cell》2006,19(1):11-16
A bioreactor was developed as an instrument to culture human or animal cells that require attachment in a large quantity or at a high density. The purpose for developing such a bioreactor is two-fold: to produce a large quantity of animal or human cells that have been modified by gene recombination technology to accommodate manufacture of physiologically-active substances or human proteins on an industrial scale; and for research to culture animal cells to form a high-density 3-dimensional structure as a morphological or functional tissue or organ entity. In the current report, the circulatory flow bioreactor and radial flow bioreactor (RFB) are introduced, in which the former can be scaled up. As a small bioreactor produced for the latter purpose, a rotary cell culture system and novel multicoaxial hollow-fiber bioreactor are introduced. Finally, a small RFB culture system that was scaled down by the present author and his collaborators for the study of a 3-dimensional high density culture system is described. The RFB can be readily scaled up for manufacturing or scaled down for research purposes. This is a cell culturing system that can induce the functions of human tissues by preparing a high density 3-dimensional organization of cells of human origin.  相似文献   

12.
To find an EPR dosimeter material that is sensitive enough for clinical use, the substance 2-methylalanine (2MA) with the chemical structure (CH(3))(2)C(NH(3)(+))COO(-) was tested for its sensitivity to ionizing radiation, dose response, and radical stability over time. At equal and moderate settings of microwave power and modulation amplitude, 2MA was found to be 70% more sensitive than L-alpha-alanine, which is the most common EPR dosimeter material today. The dose response is linear, at least in the dose range of interest (0.5-00 Gy), and the time-dependent variations in signal intensity are very small and may be corrected for easily. The energy dependence of the stopping power and energy absorption was calculated and was found to be similar to that of alanine. The dependence of the signal intensity on microwave power and modulation amplitude was investigated, and the optimal settings were found to be 25 mW (Bruker ER 4102ST) and 12 gauss, respectively. Single crystals of 2MA were analyzed using ENDOR and ENDOR-induced EPR to identify the radiation-induced radicals that formed. Only one radical, in which the amino group is detached from the original molecule, was identified. This radical is obviously dominating and is apparently the only one relevant for dosimetry purposes. The complete set of coupling parameters for three hyperfine couplings is reported. The power saturation properties and spectral line width are ruled by the relaxation times T(1) and T(2). To determine the relaxation times of 2MA, pulsed EPR experiments were performed on single crystals. Two different values of T(1) were obtained, one in the range 1-3 micros, shown to be of importance for the dosimetry properties, and another that is strongly anisotropic with a value between 10 and 35 micros that does not seem to affect the saturation behavior. T(2) was estimated to be of the order of 200-300 ns.  相似文献   

13.
To carry out in vivo studies of the possible health effects of radiation from cellular telephone handsets, it is necessary to expose large numbers of small mammals at realistic power densities, modulations, and frequencies. Because even microwatt leakage could compromise the local cellular system, extreme care in shielding is required. Experimental logistics dictate, however, that the irradiated animals be easily accessed and that it be possible to irradiate them in small groups, while other groups are being loaded into or unloaded from the irradiators. This problem has been resolved by exposing the animals in aluminum-sheathed rectangular parallelepipeds, lined with microwave absorber and having doors that can be opened readily. Inside each of these microwave anechoic “chamberettes” is a vertical, four-element collinear array of dipole antennas; and around each antenna, 10 animal restrainers can be arranged like spokes on a wheel. The system has worked efficiently in studies of up to 480 rats. There is negligible coupling between antennas, and back reflection at an antenna's feed line is down 7–9 dB. Received CDMA power at the local base station is below the receiver's noise floor. Interior illumination reinforces the rats' diurnal rhythms, and the rats sleep during irradiation. Experimental logistics are excellent. In this paper, the irradiator design is presented. Bioelectromagnetics 19:459–468, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The present paper describes the construction and application of a small hydrometric wing designed for use in streams 5–45 cm deep and which can replace factory produced devices, which are often unavailable for various reasons. The device is designed for hydrobiological purposes.  相似文献   

15.
The effect of heat and microwave denaturation of small volumes of double-stranded plasmid DNA has been compared. Samples of intact plasmid DNA had plasmid DNA linearized by digestion with EcoRI were conventionally denatured in a boiling water bath or denatured by 2450 MHz of microwave energy for 0-300 s. Heat denaturation for periods longer than 120 s caused breakdown of linearized plasmid DNA; however, microwave denaturation for 10-300 s caused no apparent degradation of linearized DNA. Breakdown of DNA forms II and III was noted in plasmid DNA subjected to 300 s of either heat or microwave denaturation but breakdown of forms II and III occurred more quickly with heat than with microwave treatment. Microwave treatment was also found to be better than heat to denature 32P-labeled DNA probes subsequently used to detect homologous DNA samples immobilized on nitrocellulose filters. A microwave-treated 32P-labeled DNA probe was able to hybridize to DNA samples 20 times more dilute than a heat-treated 32P-labeled DNA probe. Depending on the form of DNA to be analyzed, these results indicate that small volumes of DNA solutions and radiolabeled DNA probes can be effectively denatured in a conventional microwave oven.  相似文献   

16.

Background  

The reliable prediction of protein tertiary structure from the amino acid sequence remains challenging even for small proteins. We have developed an all-atom free-energy protein forcefield (PFF01) that we could use to fold several small proteins from completely extended conformations. Because the computational cost of de-novo folding studies rises steeply with system size, this approach is unsuitable for structure prediction purposes. We therefore investigate here a low-cost free-energy relaxation protocol for protein structure prediction that combines heuristic methods for model generation with all-atom free-energy relaxation in PFF01.  相似文献   

17.
Results are presented from measurements of the electron temperature and neutral atom density in a low-temperature microwave plasma by the method of emission spectroscopy. The measurements were conducted in the PNX-U facility—a magnetic confinement system with a “magnetic wall.” Multichord measurements of plasma radiation at a wavelength of 750.37 nm were performed with the help of an absolutely calibrated monochromator. The neutral atom density was calculated using the collisional-radiative model. The degree of plasma ionization near the axis of the facility was found to be close to unity. The electron temperature of the argon plasma was measured from the relative intensities of the spectral lines of neutral helium injected in small amounts into the plasma (the so-called helium thermometer method). At a low microwave heating power, the results of these measurements agree well with the results of probe measurements.  相似文献   

18.
Studies conducted by the authors and their coworkers on the mechanisms and physiologic significance of radiofrequency hearing effects are reviewed. Results of these studies demonstrate that 1) thermoelastic expansion of fluids and structures within the inner ear is the main mechanism by which auditory stimuli are produced by microwave pulses; 2) the frequency spectra of these stimuli are indistinguishable from the spectra of rectangular pulses with the same durations as the microwave pulses; 3) exposure to continuous-wave (CW) microwave radiation evokes an increase in the metsbolic activities of nuclei in the ascending auditory pathway and also decreases the latency and increases the magnitude of brainstem-evoked responses produced by acoustic clicks; and 4) the mechanism of the effects of CW microwave radiation on the auditory system is intracochlear heating. The significance of these findings is discussed in terras of potential applications of microwave stimuli in basic research on the auditory system and in terms of interpreting the results of past studies that demonstrate behavioral sensitivity to CW microwave fields.  相似文献   

19.
硫化氢(H_2S)作为继一氧化氮和一氧化碳后的第三种气体信号分子,日渐受到人们的关注,检测技术的发展为研究提供了帮助。H_2S在人体各系统中发挥着重要的作用,如心血管系统、神经系统、呼吸系统等,其与高血压、动脉粥样硬化、神经退行性疾病、哮喘等疾病的发生发展有着密切的联系,具有作为疾病治疗药物的潜能。对于H_2S作用于靶分子机制的阐述深化了小分子物质调控大分子功能的研究,提供了对多种疾病进行干预的新手段。  相似文献   

20.
The possibility is studied of attenuating the feedback wave in electron-beam-based Cherenkov microwave oscillators at the expense of its resonant interaction with the beam cyclotron wave under normal Doppler effect conditions. Oscillators operating in the regimes of the collective and single-particle stimulated Cherenkov effects are considered. Stability conditions for a system with a beam that is subject to the Cherenkov and cyclotron resonances at the emission frequency are found. Applications to particular problems in plasma microwave electronics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号