首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Nuclei of higher organisms are well structured and have multiple, distinct nuclear compartments or nuclear bodies. Paraspeckles are recently identified mammal-specific nuclear bodies ubiquitously found in most cells cultured in vitro. To investigate the physiological role of paraspeckles, we examined the in vivo expression patterns of two long noncoding RNAs, NEAT1_1 and NEAT1_2, which are essential for the architectural integrity of nuclear bodies. Unexpectedly, these genes were only strongly expressed in a particular subpopulation of cells in adult mouse tissues, and prominent paraspeckle formation was observed only in the cells highly expressing NEAT1_2. To further investigate the cellular functions of paraspeckles, we created an animal model lacking NEAT1 by gene targeting. These knockout mice were viable and fertile under laboratory growth conditions, showing no apparent phenotypes except for the disappearance of paraspeckles. We propose that paraspeckles are nonessential, subpopulation-specific nuclear bodies formed secondary to particular environmental triggers.  相似文献   

4.
Paraspeckles are unique subnuclear structures built around a specific long noncoding RNA, NEAT1, which is comprised of two isoforms produced by alternative 3′-end processing (NEAT1_1 and NEAT1_2). To address the precise molecular processes that lead to paraspeckle formation, we identified 35 paraspeckle proteins (PSPs), mainly by colocalization screening with a fluorescent protein-tagged full-length cDNA library. Most of the newly identified PSPs possessed various putative RNA-binding domains. Subsequent RNAi analyses identified seven essential PSPs for paraspeckle formation. One of the essential PSPs, HNRNPK, appeared to affect the production of the essential NEAT1_2 isoform by negatively regulating the 3′-end polyadenylation of the NEAT1_1 isoform. An in vitro 3′-end processing assay revealed that HNRNPK arrested binding of the CPSF6–NUDT21 (CFIm) complex in the vicinity of the alternative polyadenylation site of NEAT1_1. In vitro binding assays showed that HNRNPK competed with CPSF6 for binding to NUDT21, which was the underlying mechanism to arrest CFIm binding by HNRNPK. This HNRNPK function led to the preferential accumulation of NEAT1_2 and initiated paraspeckle construction with multiple PSPs.  相似文献   

5.
6.
β-III-Spectrin is a key cytoskeletal protein that localizes to the soma and dendrites of cerebellar Purkinje cells and is required for dendritic arborization and signaling. A spinocerebellar ataxia type 5 L253P mutation in the cytoskeletal protein β-III-spectrin causes high-affinity actin binding. Previously we reported a cell-based fluorescence assay for identification of small-molecule actin-binding modulators of the L253P mutant β-III-spectrin. Here we describe a complementary, in vitro, fluorescence resonance energy transfer (FRET) assay that uses purified L253P β-III-spectrin actin-binding domain (ABD) and F-actin. To validate the assay for high-throughput compatibility, we first confirmed that our 50% FRET signal was responsive to swinholide A, an actin-severing compound, and that this yielded excellent assay quality with a Z′ value > 0.77. Second, we screened a 2684-compound library of US Food and Drug Administration–approved drugs. Importantly, the screening identified numerous compounds that decreased FRET between fluorescently labeled L253P ABD and F-actin. The activity and target of multiple Hit compounds were confirmed in orthologous cosedimentation actin-binding assays. Through future medicinal chemistry, the Hit compounds can potentially be developed into a spinocerebellar ataxia type 5–specific therapeutic. Furthermore, our validated FRET-based in vitro high-throughput screening platform is poised for screening large compound libraries for β-III-spectrin ABD modulators.  相似文献   

7.
8.
Although new genes can arrive from modes other than duplication, few examples are well characterized. Given high expression in some human brain subregions and a putative link to psychological disorders [e.g., schizophrenia (SCZ)], suggestive of brain functionality, here we characterize piggyBac transposable element-derived 1 (PGBD1). PGBD1 is nonmonotreme mammal-specific and under purifying selection, consistent with functionality. The gene body of human PGBD1 retains much of the original DNA transposon but has additionally captured SCAN and KRAB domains. Despite gene body retention, PGBD1 has lost transposition abilities, thus transposase functionality is absent. PGBD1 no longer recognizes piggyBac transposon-like inverted repeats, nonetheless PGBD1 has DNA binding activity. Genome scale analysis identifies enrichment of binding sites in and around genes involved in neuronal development, with association with both histone activating and repressing marks. We focus on one of the repressed genes, the long noncoding RNA NEAT1, also dysregulated in SCZ, the core structural RNA of paraspeckles. DNA binding assays confirm specific binding of PGBD1 both in the NEAT1 promoter and in the gene body. Depletion of PGBD1 in neuronal progenitor cells (NPCs) results in increased NEAT1/paraspeckles and differentiation. We conclude that PGBD1 has evolved core regulatory functionality for the maintenance of NPCs. As paraspeckles are a mammal-specific structure, the results presented here show a rare example of the evolution of a novel gene coupled to the evolution of a contemporaneous new structure.  相似文献   

9.
10.
11.
12.
Numerous assay methods have been developed to identify small-molecule effectors of protein kinases, but no single method can be applied to all isolated kinases. The authors developed a set of 3 high-throughput screening (HTS)-compatible biochemical assays that can measure 3 mechanistically distinct properties of a kinase active site, with the goal that at least 1 of the 3 would be applicable to any kinase selected as a target for drug discovery efforts. Two assays measure catalytically active enzyme: A dissociation-enhanced lanthanide fluoroimmuno assay (DELFIA) uses an antibody to quantitate the generation of phosphorylated substrate; a second assay uses luciferase to measure the consumption of adenosine triphosphate (ATP) during either phosphoryl-transfer to a peptide substrate or to water (intrinsic ATPase activity). A third assay, which is not dependent on a catalytically active enzyme, measures the competition for binding to kinase between an inhibitor and a fluorescent ATP binding site probe. To evaluate the suitability of these assays for drug discovery, the authors compared their ability to identify inhibitors of a nonreceptor protein tyrosine kinase from the Tec family, interleukin-2-inducible T cell kinase (ITK). The 3 assays agreed on 57% of the combined confirmed hit set identified from screening a 10,208-compound library enriched with known kinase inhibitors and molecules that were structurally similar. Among the 3 assays, the one measuring intrinsic ATPase activity produced the largest number of unique hits, the fewest unique misses, and the most comprehensive hit set, missing only 2.7% of the confirmed inhibitors identified by the other 2 assays combined. Based on these data, all 3 assay formats are viable for screening and together provide greater options for assay design depending on the targeted kinase.  相似文献   

13.
In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds’ mechanisms of action—i.e., the specific molecular targets by which they kill the parasite—would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS), St. Jude Children’s Research Hospital (260 compounds), and the Medicines for Malaria Venture (the 400-compound Malaria Box) were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4), mitogen-associated protein kinase 2 (MAPK2/MAP2), protein kinase 6 (PK6), and protein kinase 7 (PK7). Novel potent inhibitors (IC50 < 1 μM) were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2) cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible.  相似文献   

14.
The γ-aminobutyric acid A (GABAA) ion channels are important drug targets for treatment of neurological and psychiatric disorders. Finding GABAA channel subtype selective allosteric modulators could lead to new improved treatments. However, the progress in this area has been obstructed by the challenging task of developing functional assays to support screening efforts and the generation of cells expressing functional GABAA ion channels with the desired subtype composition. To address these challenges, we developed a yellow fluorescent protein (YFP)-based assay to be able to study allosteric modulation of the GABAA ion channel using cryopreserved, transiently transfected, assay-ready cells. We show for the first time how the MaxCyte STX electroporation instrument can be used to generate CHO-K1 cells expressing functional GABAA α2β3γ2 along with a halide sensing YFP-H148Q/I152L (YFP-GABAA2 cells). As a basis for a cell-based assay capable of detecting allosteric modulators, experiments with antagonist, ion channel blocker and modulators were used to verify GABAA subunit composition and functionality. We found that the I concentration used in the YFP assay affected both basal quench of YFP and potency of GABA. For the first time the assay was used to study modulation of GABA with 7 known modulators where statistical analysis showed that the assay can distinguish modulatory pEC50 differences of 0.15. In conclusion, the YFP assay proved to be a robust, reproducible and inexpensive assay. These data provide evidence that the assay is suitable for high throughput screening (HTS) and could be used to discover novel modulators acting on GABAA ion channels.  相似文献   

15.
NEAT1_2 long noncoding RNA (lncRNA) is the molecular scaffold of paraspeckle nuclear bodies. Here, we report an improved RNA extraction method: extensive needle shearing or heating of cell lysate in RNA extraction reagent improved NEAT1_2 extraction by 20‐fold (a property we term “semi‐extractability”), whereas using a conventional method NEAT1_2 was trapped in the protein phase. The improved extraction method enabled us to estimate that approximately 50 NEAT1_2 molecules are present in a single paraspeckle. Another architectural lncRNA, IGS16, also exhibited similar semi‐extractability. A comparison of RNA‐seq data from needle‐sheared and control samples revealed the existence of multiple semi‐extractable RNAs, many of which were localized in subnuclear granule‐like structures. The semi‐extractability of NEAT1_2 correlated with its association with paraspeckle proteins and required the prion‐like domain of the RNA‐binding protein FUS. This observation suggests that tenacious RNA–protein and protein–protein interactions, which drive nuclear body formation, are responsible for semi‐extractability. Our findings provide a foundation for the discovery of the architectural RNAs that constitute nuclear bodies.  相似文献   

16.
NEAT1 is an important tumor oncogenic gene in various tumors. Nevertheless, its involvement remains poorly studied in cervical cancer. Our study explored the functional mechanism of NEAT1 in cervical cancer. NEAT1 level in several cervical cancer cells was quantified and we found NEAT1 was greatly upregulated in vitro. NEAT1 knockdown inhibited cervical cancer development through repressing cell proliferation, colony formation, capacity of migration, and invasion and also inducing the apoptosis. For another, microRNA (miR)-133a was downregulated in cervical cancer cells and NEAT1 negatively modulated miR-133a expression. Subsequently, we validated that miR-133a functioned as a potential target of NEAT1. Meanwhile, SOX4 is abnormally expressed in various cancers. SOX4 was able to act as a downstream target of miR-133a and silencing of SOX4 can restrain cervical cancer progression. In addition, in vivo assays were conducted to prove the role of NEAT1/miR-133a/SOX4 axis in cervical cancer. These findings implied that NEAT1 served as a competing endogenous RNA to sponge miR-133a and regulate SOX4 in cervical cancer pathogenesis. To sum up, it was implied that NEAT1/miR-133a/SOX4 axis was involved in cervical cancer development.  相似文献   

17.
Estrogen receptors alpha (ERalpha) and beta (ERbeta) have distinct functions and differential expression in certain tissues. These differences have stimulated the search for subtype-selective ligands. Therapeutically, such ligands offer the potential to target specific tissues or pathways regulated by one receptor subtype without affecting the other. As reagents, they can be utilized to probe the physiological functions of the ER subtypes to provide information complementary to that obtained from knock-out animals. A fluorescence resonance energy transfer-based assay was used to screen a 10,000-compound chemical library for ER agonists. From the screen, we identified a family of ERbeta-selective agonists whose members contain bulky oxabicyclic scaffolds in place of the planar scaffolds common to most ER ligands. These agonists are 10-50-fold selective for ERbeta in competitive binding assays and up to 60-fold selective in transactivation assays. The weak uterotrophic activity of these ligands in immature rats and their ability to stimulate expression of an ERbeta regulated gene in human U2OS osteosarcoma cells provides more physiological evidence of their ERbeta-selective nature. To provide insight into the molecular mechanisms of their activity and selectivity, we determined the crystal structures of the ERalpha ligand-binding domain (LBD) and a peptide from the glucocorticoid receptor-interacting protein 1 (GRIP1) coactivator complexed with the ligands OBCP-3M, OBCP-2M, and OBCP-1M. These structures illustrate how the bicyclic scaffolds of these ligands are accommodated in the flexible ligand-binding pocket of ER. A comparison of these structures with existing ER structures suggests that the ERbeta selectivity of OBCP ligands can be attributed to a combination of their interactions with Met-336 in ERbeta and Met-421 in ERalpha. These bicyclic ligands show promise as lead compounds that can target ERbeta. In addition, our understanding of the molecular determinants of their subtype selectivity provides a useful starting point for developing other ER modulators belonging to this relatively new structural class.  相似文献   

18.
Functional cell-based uHTS in chemical genomic drug discovery   总被引:1,自引:0,他引:1  
The availability of genomic information significantly increases the number of potential targets available for drug discovery, although the function of many targets and their relationship to disease is unknown. In a chemical genomic research approach, ultra-high throughput screening (uHTS) of genomic targets takes place early in the drug discovery process, before target validation. Target-selective modulators then provide drug leads and pharmacological research tools to validate target function. Effective implementation of a chemical genomic strategy requires assays that can perform uHTS for large numbers of genomic targets. Cell-based functional assays are capable of the uHTS throughput required for chemical genomic research, and their functional nature provides distinct advantages over ligand-binding assays in the identification of target-selective modulators.  相似文献   

19.
Importin (IMP) superfamily members mediate regulated nucleocytoplasmic transport, which is central to key cellular processes. Although individual IMPα proteins exhibit dynamic synthesis and subcellular localization during cellular differentiation, including during spermatogenesis, little is known of how this affects cell fate. To investigate how IMPαs control cellular development, we conducted a yeast two-hybrid screen for IMPα2 cargoes in embryonic day 12.5 mouse testis, a site of peak IMPα2 expression coincident with germ-line masculization. We identified paraspeckle protein 1 (PSPC1), the original defining component of nuclear paraspeckles, as an IMPα2-binding partner. PSPC1-IMPα2 binding in testis was confirmed in immunoprecipitations and pull downs, and an enzyme-linked immunosorbent assay–based assay demonstrated direct, high-affinity PSPC1 binding to either IMPα2/IMPβ1 or IMPα6/IMPβ1. Coexpression of full-length PSPC1 and IMPα2 in HeLa cells yielded increased PSPC1 localization in nuclear paraspeckles. High-throughput image analysis of >3500 cells indicated IMPα2 levels can directly determine PSPC1-positive nuclear speckle numbers and size; a transport-deficient IMPα2 isoform or small interfering RNA knockdown of IMPα2 each reduced endogenous PSPC1 accumulation in speckles. This first validation of an IMPα2 nuclear import cargo in fetal testis provides novel evidence that PSPC1 delivery to paraspeckles, and consequently paraspeckle function, may be controlled by modulated synthesis of specific IMPs.  相似文献   

20.
Melanoma contributes a lot to skin cancer-related deaths. lncRNAs are implicated in various diseases, including melanoma. lncRNA NEAT1 is frequently dysregulated and can play important roles in multiple cancers. Nevertheless, little has been studied about the function of NEAT1 in melanoma progression. In our present research, we displayed NEAT1 was overexpressed in melanoma cells. A series of functional assays showed that overexpression of NEAT1 promoted the proliferation, migration, and invasion of melanoma cells. By contrast, NEAT1 knockdown obviously restrained melanoma cell progression. Mechanistically, it was revealed that NEAT1 could directly bind with miR-495-3p, which led to a negative effect on miR-495-3p levels. In addition, miR-495-3p was significantly decreased in melanoma cells. Furthermore, E2F3 was postulated as the target of miR-495-3p and overexpression of this miR could suppress the levels of E2F3. Meanwhile, it was exhibited that melanoma cell proliferation, migration, and invasion induced by E2F3 silence was abrogated by miR-495-3p. Moreover, an in vivo xenograft nude mice model was established using A375 cells and it was indicated that NEAT1 promoted melanoma progression in vivo via regulating the miR-495-3p/E2F3 axis. In conclusion, we suggest that NEAT1 exerts an oncogenic effect on melanoma development via inhibition of miR-495-3p and induction of E2F3. NEAT1 might serve as a crucial prognostic biomarker of melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号