首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immobilizaton of the enzyme glutaryl-7-aminocephalosporanic acid acylase (GA) was performed via ionic adsorption onto several supports: a new anionic exchange resin, based on the coating of Sepabeads internal surfaces with polyethyleneimine (PEI) of different molecular weights, and conventional EC-Q1A-Sepabeads and DEAE-agarose. Immobilization occurred very rapidly in all cases, but the adsorption strength was much higher in the case of PEI-Sepabeads than in the other supports at pH 7 (e.g., at 150 mM NaCl, 90% of the enzyme was eluted from the DEAE agarose and 15% was eluted from the EC-Q1A-Sepabeads, whereas no desorption was detected with the best PEI-Sepabeads). Interestingly, the adsorption strength of the GA was increased when it was immobilized on PEI-Sepabeads with higher molecular weights. For instance, enzyme desorption was detected from 75 mM NaCl for the derivative prepared onto Sepabeads coated with PEI 700 Da, whereas in the derivative prepared with the highest molecular weight PEI (600 000 Da) no enzyme desorption was detected below 150 mM NaCl. Optimal PEI-Sepabeads (prepared with PEI of 600 000 Da) was even much more thermostable than the covalent derivative prepared onto cyanogen bromide agarose. Moreover, this derivative presented a half-life 26-fold higher than that of the soluble enzyme at 45 degrees C, and the support could be reused 10 times after the full desorption of the enzyme without decreasing loading capacity.  相似文献   

2.
A novel type of biocatalyst that combines the good properties of cross-linked enzyme aggregates (CLEAs) and hydrophilic microenvironments has been developed. Dextran sulfate- and polyethyleneimine-coated CLEAs of penicillin acylase (CLEA-GDP) were prepared by adding the polymers of different sizes before the precipitation stage of the enzyme. This study presents the development and optimization of a protocol to produce such a biocatalyst using penicillin acylase as a model. Experiments show that CLEA-GDPs have a highly increased stability in organic media. The average half-life of the preparations was much higher than standard CLEA without a microenvironment (CLEA-G), (e.g., more than 25-fold) in the presence of dioxane. However, their thermal stability was not increased, which leads to the conclusion that the stability of CLEA-GDPs in organic media is due to the hydrophilic microenvironment that surrounds the protein enzyme more than to a conformational stiffening effect. This is further supported by solvation experiments that show a preferential hydration of CLEA when polymers are used to coat the enzyme. CLEA-GDPs are clearly better than other biocatalysts in terms of solvent stability.  相似文献   

3.
Directed evolution of a glutaryl acylase into an adipyl acylase.   总被引:2,自引:0,他引:2  
Semi-synthetic cephalosporin antibiotics belong to the top 10 of most sold drugs, and are produced from 7-aminodesacetoxycephalosporanic acid (7-ADCA). Recently new routes have been developed which allow for the production of adipyl-7-ADCA by a novel fermentation process. To complete the biosynthesis of 7-ADCA a highly active adipyl acylase is needed for deacylation of the adipyl derivative. Such an adipyl acylase can be generated from known glutaryl acylases. The glutaryl acylase of Pseudomonas SY-77 was mutated in a first round by exploration mutagenesis. For selection the mutants were grown on an adipyl substrate. The residues that are important to the adipyl acylase activity were identified, and in a second round saturation mutagenesis of this selected stretch of residues yielded variants with a threefold increased catalytic efficiency. The effect of the mutations could be rationalized on hindsight by the 3D structure of the acylase. In conclusion, the substrate specificity of a dicarboxylic acid acylase was shifted towards adipyl-7-ADCA by a two-step directed evolution strategy. Although derivatives of the substrate were used for selection, mutants retained activity on the beta-lactam substrate. The strategy herein described may be generally applicable to all beta-lactam acylases.  相似文献   

4.
3',5'-Diacyl-2'-bromo-5-fluoro-2'-deoxyuridine (4) was obtained by the reaction of 5, 6-dihydro-6-hydroxy-5-fluorouridine (2) and acyl bromide. Because the route from uridine (1) to 2, the route from 4 to 3',5'-diacyl-5-fluoro-2'-deoxyuridine (5), and the route from 5 to 5-fluoro-2'-deoxyuridine (FUDR, 6) are known reactions, the three step synthesis from uridine to 5 and four step synthesis from uridine to FUDR have been accomplished.  相似文献   

5.
Crosslinking of enzyme aggregates is a promising method for enzyme immobilization. In this work, crosslinked enzyme coaggregates of Serratia marcescens lipase with polyethyleneimine (CLECAs-SML-PEI) were prepared using polyethyleneimine (PEI) as coprecipitant and glutaraldehyde as crosslinking reagent. The crude lipase solution at a low protein concentration (0.1 mg/ml), with PEI at a mass ratio of 3:1 (PEI/protein, w/w), was found to be most adequate for the coprecipitation of SML. After crosslinking of the coaggregate of SML-PEI with 0.2% (w/v) glutaraldehyde under ambient temperature, over 70% of the total lipase activity was recovered. Compared with the free SML, the optimum temperature of the CLECAs-SML-PEI was enhanced from 50 °C to 60 °C and its thermal stability was also significantly improved. CLECAs-SML-PEI showed excellent operational stability in repeated use in aqueous–toluene biphasic system for asymmetric hydrolysis of trans-3-(4′-methoxyphenyl)glycidic acid methyl ester (MPGM), without significant inactivation after 10 rounds of repeated use.  相似文献   

6.
Kim JK  Yang IS  Rhee S  Dauter Z  Lee YS  Park SS  Kim KH 《Biochemistry》2003,42(14):4084-4093
Glutaryl 7-aminocephalosporanic acid acylase (GCA, EC 3.5.1.11) is a member of N-terminal nucleophile (Ntn) hydrolases. The native enzyme is an (alpha beta)(2) heterotetramer originated from an enzymatically inactive precursor of a single polypeptide. The activation of precursor GCA consists of primary and secondary autoproteolytic cleavages, generating a terminal residue with both a nucleophile and a base and releasing a nine amino acid spacer peptide. We have determined the crystal structures of the recombinant selenomethionyl native and S170A mutant precursor from Pseudomonas sp. strain GK16. Precursor activation is likely triggered by conformational constraints within the spacer peptide, probably inducing a peptide flip. Autoproteolytic site solvent molecules, which have been trapped in a hydrophobic environment by the spacer peptide, may play a role as a general base for nucleophilic attack. The activation results in building up a catalytic triad composed of Ser170/His192/Glu624. However, the triad is not linked to the usual hydroxyl but the free alpha-amino group of the N-terminal serine residue of the native GCA. Mutagenesis and structural data support the notion that the stabilization of a transient hydroxazolidine ring during autoproteolysis would be critical during the N --> O acyl shift. The autoproteolytic activation mechanism for GCA is described.  相似文献   

7.
8.
The gene coding for the glutaryl 7-aminocephalosporanic acid (GL 7-ACA) acylase from Pseudomonas diminuta KAC-1 was cloned and expressed in Escherichia coli. The acylase gene was composed of 2160 base pairs and encoded a polypeptide of 720 amino acid residues. The E. coli BL21 carrying pET2, the plasmid construct for high expression of GL 7-ACA acylase gene, produced this enzyme at approx. 30% of the total proteins with 3.2 units activity mg protein–1. Growth at temperature below 31 °C and deletion of signal peptide increased the processing of precursor acylase to active enzyme in the recombinant E. coli cells.  相似文献   

9.
Highly stable enzyme coaggregates were developed using amyloid fibrils as support materials. Amyloid fibril formation was induced by ionic liquids, and immobilization was done by the coaggregation of enzymes and amyloid fibrils followed by chemical cross-linking. Transmission and scanning electron microscopy studies were carried out to characterize the coaggregates. The amyloid fibril-linked enzymes showed significantly increased stability against various deactivating conditions. In addition, a high level of reusability was clearly observed. This study clearly demonstrated that amyloid fibrils can be used as biomaterials for enzyme immobilization and that amyloid fibril-linked enzyme coaggregates have good potential for industrial applications.  相似文献   

10.
In the present work, we obtained an immobilized phospholipase A(2) system through covalent coupling by using an acrylic polymer Eupergit C as support. The immobilized enzyme from cobra venom (Naja naja naja) showed good retention activity and excellent stability. Both properties are of great importance for biomedical applications such as hypercholesterolemia treatments.  相似文献   

11.
Synthetic polymer-bound hemin (iron(III) protoporphyrin IX) derivatives were effectively reduced by ferredoxin and ferredoxin-NADP reductase system. The resultant polymer-bound heme (iron(II) protoporphyrin IX) derivatives formed oxygen adducts with a lifetime of ca. 1 hr in aqueous solution at -30 degrees C. The reduction rate is discussed in terms of the structure of the hemin derivatives.  相似文献   

12.
A batch of the immobilized industrial biocatalyst glutaryl-7-ACA acylase (GA), one of the two enzymes involved in the biotransformation of cephalosporin C (CefC) into 7-aminocephalosporanic acid (7-ACA), was characterized. K(m) value for glutaryl-7-ACA was 5 mM. Enzyme activity was found to be optimal at pH between 7 and 9.5 and to increase with temperature and in buffered solutions. To avoid product degradation, optimal reaction conditions were obtained working at 25 degrees C using a 50-mM phosphate buffer, pH 8.0. Immobilized GA showed good stability at pH value below 9 and at temperature up to 30 degrees C. The inactivation of immobilized GA in the presence of different amounts of H(2)O(2), a side product that might be present in the plant-scale industrial solutions of glutaryl-7-ACA, was also investigated, but the deactivation rates were negligible at H(2)O(2) concentration that might be reached under operative conditions. Finally, biocatalyst performance in the complete two-step enzymatic conversion process from CefC to 7-ACA was determined on a laboratory scale. Following the complete conversion of a 75 mM solution of CefC into glutaryl-7-ACA catalyzed by an immobilized D-amino acid oxidase (DAAO), immobilized GA was used for the transformation of this intermediate into the final product 7-ACA. This reaction was repeated for 42 cycles. An estimation of the residual activity of the biocatalyst showed that 50% inactivation of immobilized GA was reached after approximately 300 cycles, corresponding to an enzyme consumption of 0.4 kU per kg of isolated 7-ACA.  相似文献   

13.
A simple technique for repair of involutional entropion is described. A 4 x 20 mm strip of cartilage is removed from the concha of the ear and placed in the lower lid, deep to the orbicularis muscle. Over the past 6 years, I have performed this procedure on 15 patients. Fourteen patients had an excellent result; one patient required a secondary lateral wedge resection. There have been no recurrences. The tarsal plate of the lower eyelid appears to soften and shrink with advancing age. As the tarsus shrinks, the lid becomes less rigid and the margin tends to roll inward. Creating a neotarsus out of ear cartilage provides a simple and stable repair for involutional entropion because it restores the structural rigidity of the lower lid. The operative procedure is technically simple. Its long-term effectiveness confirms the view, not widely held, that one primary cause of involutional entropion is a shrunken and atrophic tarsal plate.  相似文献   

14.
We report the development of a new spectrophotometric assay for 6-phosphogluconolactonase. The labile substrate 6-phosphoglucono-delta-lactone is prepared from glucose 6-phosphate by enzymes co-immobilized on Sepharose beads. The assay has the advantages of high sensitivity for routine determination of enzyme activity and allows determination of both Km and Vmax. from a single assay. A method for estimating the contribution of spontaneous hydrolysis to total hydrolysis is described. This assay overcomes the problems encountered with all previous assays.  相似文献   

15.
16.
Reactivation of penicillin G acylase immobilized in glyoxyl-agarose after inactivation was studied with the purpose of increasing the lifespan of the biocatalyst by simple and reproducible strategies, considering unfolding–refolding and direct incubation in reactivation media. Reactivation yields were increased with respect to the control (fully aqueous medium) when cosolvents were added to the reactivation medium at concentrations below 50% (v/v). Best results were obtained with 30% (v/v) ethyleneglycol (EG) in both reactivation strategies. An increase in reactivation yield from 36.0 to 62.8% was obtained using the unfolding–refolding strategy, while an increase from 50.0 to 68.4% was obtained by direct incubation in aqueous media with respect to control. Catalytic modulators were also included in the reactivation medium: competitive inhibitors (phenylacetic acid and 2-thienylacetic acid) caused a reduction while non-competitive (7-ADCA and 6-APA) caused an increase in reactivation yield. Combining cosolvent and catalytic modulators, best results in both strategies were obtained with 30% (v/v) EG plus 100 mM 7-ADCA, where an increase in reactivation yield from 36.0 to 96.0% and from 50.0 to 98.0% was achieved with unfolding–refolding and direct incubation in reactivation media respectively. Apparent reactivation rate was higher in the case of direct incubation in reactivation media, best results being obtained when using 100 mM 7-ADCA and 30% (v/v) EG, with an increase with respect to the control (fully aqueous medium with no modulator) from 0.309 h?1 to 1.129 h?1, while for unfolding–refolding strategy increase was only from 0.124 h?1 to 0.384 h?1. Results indicate that direct incubation is a better strategy for penicillin G acylase reactivation and opens up the possibility of significantly increasing the operational lifespan of the biocatalyst by operating the reactor with repeated cycles of reaction and reactivation.  相似文献   

17.
An active insoluble preparation of immobilized benzyl penicillin acylase (IBA) EC 3.5.1.11 has been obtained by its entrapping into polyacrylamide gel lattice. Due to immobilization the preparation maintains up to 87% of its initial activity. The kinetics of IBA at low substrate concentrations obeys the Michaelis-Menten law; however, the apparent KM value decreases and the temperature optimum elevates. The inhibition by the reaction products--6-aminopenicillanic acid and phenylacetic acid--has been found to be 4.3 mM. The resultant IBA preparation proves to be suitable for hydrolysis of 5% benzyl penicillin solutions.  相似文献   

18.
Some properties of a number of enzymes immobilized by the diazotized m-diaminobenzene (dDAB) method are described. The pH-activity profiles of beta-D-glucosidase, glucoamylase, peroxidase, uricase, and D-glucose oxidase were virtually unchanged on immobilization while those of catalase and dextranase were significantly altered. beta-D-Glucosidase, glucoamylase, and glucose oxidase were found to be more susceptible to denaturation on lyophilization when immobilized than in the native state; however, sorbitol had a marked protective effect in every case examined. Sorbitol was also found to exert a stabilizing effect when lyophilized immobilized preparations were stored. Immobilization marginally improved the stabilities of a number of enzymes to heating at 60 degrees at pH 8.0. The usefulness for continuous reaction of a column of glucoamylase attached to celite was established. The reuse of the solid supports was demonstrated.  相似文献   

19.
20.
Immobilized penicillin acylase has been used for the deacylation of benzylpenicillin at 37°C in a continuous reactor consisting of four 1 liter stirred tanks connected in series. There was good agreement between the predicted and actual conversions obtained in each tank under steady-state conditions. The operational stability of the immobilized enzyme in the tanks depended on the pH and the rate of addition and concentration of alkali needed to neutralize the acid produced during the reaction. At pH 7 with the addition of 2M NaOH, the half-life for enzyme stability was greater than 400 hr in all tanks. This was over half the value for the immobilized enzyme when stored at 37°C and pH 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号