首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The development of sustainable integrated aquaculture systems requires combining fed aquaculture (finfish) with extractive inorganic aquaculture (seaweed) and extractive organic aquaculture (shellfish). With the support of AquaNet, the Network of Centers of Excellence in Aquaculture in Canada, we are developing such a system at an industrial pilot scale by co‐cultivating salmon (Salmo salar), kelp (Laminaria saccharina) and blue mussel (Mytilus edulis) at aquaculture sites in the Bay of Fundy, Canada. This presentation will focus on the development of the extractive inorganic component. The entire cycle of rearing Laminaria saccharina has been completed and improved, both in the laboratory and at the integrated sites: release in the laboratory of spores from mature macroscopic sporophytes, seeding of ropes, germination of microscopic gametophytes, sexual maturation of male and female gametophytes, development of zygotes into juvenile sporophytes, which are then transplanted to the sites for rapid grow‐out. Another aspect of the project, food safety monitoring of chemical therapeutants and phycotoxins in mussel and kelp cultured in proximity to salmon, will also be described. The productivity, nutrient absorption capacity, and role of the seaweed component are being analyzed so that its appropriate scale to the other components can be defined in order to develop responsible aquaculture practices in which metabolic/physiological processes of the different co‐cultured organisms counter‐balance each other within acceptable operational limits. Adopting polytrophic strategies will be key to the aquaculture industry to develop its environmentally and economically‐balanced diversification and increase its social acceptability within a broader coastal management framework.  相似文献   

2.
The kelp, Laminaria saccharina, is an economically and biologically valuable seaweed used in integrated multi-trophic aquaculture. The development of the initial microscopic phase of the life cycle of this species is carried out in the laboratory. A treatment of germanium dioxide (GeO2) can be applied to algal laboratory cultures to inhibit the growth of contaminating diatoms. Previous studies reported inhibitory effects also affecting the macroscopic stage of the life cycle of L. saccharina, the sporophyte, but the effects on the microscopic gametophytic life stage are unknown. To determine the effects, cultures of L. saccharina were treated with varying concentrations of GeO2 and the resulting lengths and surface area of the juvenile sporophytes produced were measured. It was determined that GeO2 follows a typical dose-effect pattern, increasing the growth rate of juvenile sporophytes until a critical point at which an inhibitory effect was observed. To obtain juvenile sporophytes ready for deployment to aquaculture sites in the shortest time and to successfully reduce diatom contamination, it was determined that a concentration between 0.10 and 0.50mL of GeO2 per litre of seawater, applied at day 8, was the most efficient.  相似文献   

3.
Parthenogenetic sporophytes were obtained from three strains of Laminaria japonica Areschoug. These sporophytes grew to maturity in the sea, producine spores that all grew into female gametophytes. These female gametophytes gave rise to another generation of parthenogenetic sporophytes during the next year, so that by the year 1990 parthenogenetic sporophytes had been cultivated for 12, 9, and 7 generations, respectively, for the three strains. When female gametophytes from parthenogenetic sporophytes were combined with normal male gametophytes, normal sporophytes that reproduced and gave rise to both female and male gametophytes were obtained. The parthenogenetic sporophytes were shorter and narrower than the normal sporophytes of the same strain. Chromosome counts on mature sporophytes showed that normal sporophytes (from fertilized eggs) were diploid (2n = approximately 40) and that the spores they produced were haploid (n = approximately 20), while nuclei from both somatic and sporangial cells in parthenogenetic sporophytes were haploid. All gametophytes were haploid. Young sporophytes derived from cultures with both female and male gametophytes were diploid, while young, sporophytes obtained from female gametophytes from parthenogenetic sporophytes had haploid, diploid, or polyploidy chromosome numbers. Polyploidy was associated with abnormal cell shapes. The presence of haploid parthenogenetic sporophytes should be use in breeding kelp strains with useful characteristics, since the sporophyte phenotype is expressed from a haploid genotype which can be more readily selected.  相似文献   

4.
In the laboratory, ammonium and nitrate uptakes were measured for juvenile Laminaria saccharina (L.) Lamour. and Nereocystis luetkeana (Mert.) Post. et Rupr. originating from a salmon sea cage farm in northwestern British Columbia, Canada. The effect of various concentrations of NH4+ and NO3-, which are typical of salmon farming environments, on uptakes values were examined. Both L. saccharina and Nereocystis revealed simultaneous uptake of NH4+ and NO3- when both NH4+ and NO3- were present in the medium. During a 3-h incubation, mean uptake rates of NH4+ and NO3- by L. saccharina ranged from 6.0–8.9 and 4.6–10.6 μmol gdw-1 h-1, respectively, and by Nereocystis, they ranged from 6.6–9.3 μmol gdw-1 h-1 and 6.1–17.0 μmol gdw-1 h-1, respectively. The highest uptake rates (14.8 μmol NH4+ gdw-1 h-1by L. saccharina and 27.2 μmol NO3- gdw-1 h-1 by Nereocystis) occurred at the highest concentration (40 μM NH4+ plus 30 μM NO3-) during a 1 h incubation. Nitrate uptake by both L. saccharina and Nereocystis increased linearly up to the highest nitrate level tested (30 μM), whereas uptake rates of ammonium were stable beyond 10 μM NH4+ to reach approximately 10 and 13 μmol gdw-1 h-1, respectively, for L. saccharina and Nereocystis. Unlike L. saccharina, Nereocystis showed a significant preference for NO3- when more than 20 μM NO3- was present in the medium ( p <0.05). Both L. saccharina and Nereocystis would be suitable for integrated cultivation of salmon/kelp. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
A kelp/red algal symbiosis is described from nature based on extensive collections from the San Juan Islands, Washington. Kelp gametophytes were found as endophytes in the cell walls of seventeen species of red algae in three different kelp communities. Host red algae were mostly filamentous (e.g., Pleonosporium vancouverianum ) or polysiphonous (e.g. Polysiphonia paniculata ). The kelp gametophytes completed vegetative and reproductive development in the hosts with gametangia formed at the host surface and with sporophytes up to several mm in height being produced while still attached to the host. To date, none of the kelp gametophytes from nature have been identified to genus or species, although the gametophyte of Nereocystis luetkeana is a potential candidate for the symbiosis. Preliminary observations from Nova Scotia and the Isle of Man have not found the association in the Atlantic Ocean. Laboratory studies in Korea successfully reconstructed the symbiosis in the red alga Aglaothamnion oosumiense using zoospores of Undaria pinnatifida but not Laminaria religiosa. Here we outline the development of the symbiosis and discuss the potential adaptive significance of the kelp/red algal interaction.  相似文献   

6.
The effect of growth temperature on photosynthetic metabolism was studied in the kelp Laminaria saccharina (L.) Lamour. Photosynthesis was subject to phenotypic adaptation, with almost constant photosynthetic rates being achieved at growth temperatures between 0 and 20° C. This response involved: (1) an inverse relationship between growth temperature and photosynthetic capacity, (2) a reduction in the Q10 value for photosynthesis of L. saccharina grown at 0 and 5° C compared with 10, 15 and 20° C grown sporophytes, and (3) an acquired tolerance of photosynthesis to temperatures between 15–25° C (which inhibited photosynthesis in 0 and 5° C grown L. saccharina) in sporophytes grown at 10, 15 and 20° C. The physiological basis of these adaptations is discussed in terms of observed changes in activities and kinetics of the Calvin cycle enzyme ribulose-1, 5-bisphosphate carboxylase (oxygenase) and efficiency of light harvesting-electron transport systems.  相似文献   

7.
This paper describes the formation of gametophytes and the early stages of the development of sporophytes in the kelp seaweed Alaria angusta from Kamchatka. To establish laboratory cultures we used zoospores obtained from A. angusta sporophytes collected on October 29, 2014. The gametophytes were grown under different conditions: at 6–7°С and natural light and at 10°С and illumination with cool white fluorescent bulbs, 30 μmol photon m–2 s–1, 12: 12 h L: D cycle. In the first case (natural light, 6–7°С), the vegetative growth of male and female gametophytes lasted for more than 4 months; maturation of sexual products occurred 144 days after germination of the embryospores. In the second case (artificial light, 10°С), rapid development of the gametophytes occurred; the first juvenile sporophytes appeared on the 10th day after the zoospores settled onto the substrate. Our data contribute to understanding of the regulatory effect of temperature and light on the peculiarities of species vegetation in the natural environment and formation of the age structure of the species population, one particular feature of this process is the continuous appearance of juvenile sporophytes in the warm period of the year.  相似文献   

8.
A kelp/red algal symbiosis is described from nature based on extensive collections from the San Juan Islands, Washington. Kelp gametophytes were found as endophytes in the cell walls of seventeen species of red algae in three different kelp communities. Host red algae were mostly filamentous (e.g., Pleonosporium vancouverianum) or polysiphonous (e.g. Polysiphonia paniculata). The kelp gametophytes completed vegetative and reproductive development in the hosts with gametangia formed at the host surface and with sporophytes up to several mm in height being produced while still attached to the host. To date, none of the kelp gametophytes from nature have been identified to genus or species, although the gametophyte of Nereocystis luetkeana is a potential candidate for the symbiosis. Preliminary observations from Nova Scotia and the Isle of Man have not found the association in the Atlantic Ocean. Laboratory studies in Korea successfully reconstructed the symbiosis in the red alga Aglaothamnion oosumiense using zoospores of Undaria pinnatifida but not Laminaria religiosa. Here we outline the development of the symbiosis and discuss the potential adaptive significance of the kelp/red algal interaction.  相似文献   

9.
The distributions of Laminaria saccharina and the long and short stipe forms of L. groenlandica about Vancouver Island were correlated with temperature, salinity, and water motion. The 2 forms of L. groenlandica were absent from areas of high temperature and low salinity. The long stipe form was restricted to areas of heavy surf and the short stipe form to areas of moderate surf. L. saccharina was absent from areas subjected to surf. These observations were subjected to laboratory and field tests involving gametophytes and sporophytes of both species. The distributions of the 2 forms of L. groenlandica can be explained on the basis of temperature and salinity distributions: both forms require low temperature and high salinity for survival. L. saccharina has a wide range of tolerance to temperature and salinity; surf appears to be the controlling agent.  相似文献   

10.
11.
Jiang P  Qin S  Tseng CK 《Plant cell reports》2003,21(12):1211-1216
The seaweed Laminaria japonica (Phaeophyceae) has a two-generation life cycle consisting of haploid gametophytes and diploid sporophytes. Female and/or male gametophytes were transformed using particle bombardment and the histological LacZ assay was performed on sporophytes generated by either parthenogenesis or inbreeding. Female gametophyte-targeted transformation resulted in similar lower efficiencies in both parthenogenetic and zygotic sporophytes, and only a chimeric expression pattern was observed. Male gametophyte-targeted transformation led to a higher efficiency, with 3.5% of the zygotic sporophytes stained completely blue (all-blue), implying the integration of lacZ at the one-cell stage. Polymerase chain reaction analysis using primers specific for a lacZ-vector juncture fragment and subsequent blotting indicated the presence of the introduced gene in the sporophytes. The method reported here has a potential for seaweed transformation using spore-based bombardment followed by the developmental process.Abbreviations DPR Detected positive rate - ER Expression rateCommunicated by F. Sato  相似文献   

12.
The fatty acid compositions of gonadal material was examined for the sea urchin Psammechinus miliaris (Gmelin) held in aquaria and fed either salmon feed pellets or the macroalga, Laminaria saccharina for 18 months. Gonadal material was also examined from P. miliaris collected from four field sites, including commercial scallop lines encrusted with the mussel, Mytilus edulis, sea cages stocked with Atlantic salmon Salmo salar and two intertidal sea-loch sites, characterised by either a fine mud or a macroalgal substratum. The fatty acid compositions of known and potential dietary material was examined. The proportions of certain fatty acids in the gonads of P. miliaris were significantly affected by diet type and location. Docosahexaenoic acid (DHA) 22:6 n-3 was significantly higher in the gonads of the sea urchins fed salmon feed in aquaria and collected from the salmon cages and scallop lines than in the gonads of the sea urchins fed L. saccharina in aquaria and collected from the intertidal sea loch sites. The salmon feed and the mussel tissue also contained a high proportion of this fatty acid. Stearidonic acid 18:4 n-3 and arachidonic acid 20:4 n-6, however, were found in significantly higher proportions than DHA in the gonads of the sea urchins fed L. saccharina and collected from the two intertidal sea-loch sites. L. saccharina was also found to contain high proportions of stearidonic and arachidonic acid. The gonads of the sea urchins collected from the intertidal site, characterised by a mud substratum, and from the scallop lines were found to contain a lower 18:1 n-9/18:1 n-7 ratio and a higher proportion of branched and odd-chained fatty acids, signifying a high dietary bacterial input, than the sea urchins held in the aquaria and collected from the salmon cage. 20:2 and 22:2 non-methylene-interrupted dienoic fatty acids (NMIDs) were found in P. miliaris fed diets lacking these fatty acids suggesting de novo biosynthesis. These results, therefore, suggest that the proportions/ratios of certain fatty acids in the gonads of P. miliaris could be used to give an indication of the predominant diet type of this species in the wild.  相似文献   

13.
Laminaria saccharina (L) Lamour. Sporophytes were monitored monthly from October 1982 to September 1983 to investigate reproduction phenology and relationshiops to growth paatterns aaat its southern limit of distribution in the northwest Atlantic Ocean (Long Island Soundd). Plants exhibited an annual growth pattern. Growth raate, bladelehgth, maximum width, area, stiipe lehgth an wet weight swhoed the same seasonal pattern and reached maximum values between May and June. Only blade thickness continued to increase tthrooughout the ovservation period. Blade dissintegration occurred dduring August and September. Reproductive sporophytes occurred throughout the observation period; the greatest frequency of appearance occurred in October (43.8%) and June (37.8%). The blade area covered by sori ranged from 2.4% (Janaury) to 6.1% (August). Meiospore release under laboratory conditions was maximum in May and minimum in July. No meio-spores were released in August Sporulation was not correlated with meristematic growth of nitrogen content How ever, reproductive plants were generally larger and thicker throughout the sporulation period, and had a greater carbort content is spring than nonreproductive plants. Fecundity and reproductive success of female gametophytes were maximum in spring and minimum in winter. The growth of early sporophyte stages in the laboratory was greatest in early spring; however, juvenile macroscopic stages were hardly observed in the field during summer months due to warm water temperatures. “Over-summering” of gamelophytes and / or microscopic sporophytes may account for the annual cycle of Laminaria at its southern limit of distribution.  相似文献   

14.
Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy-forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10–22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10–14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16–18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes.  相似文献   

15.
Recent work suggests that the ability to delay reproduction as resistant haploid gametophytes may be important for seaweeds that experience unpredictable disturbances or seasonal periods of poor conditions that result in adult sporophyte absence. Further, delayed gametophytes of some kelp species (order Laminariales) may produce sporophytes more rapidly than if they had never experienced a delay, conferring a competitive advantage when conditions improve or after disturbance events. Here, it was determined that the gametophytes of the canopy‐forming kelp Macrocystis pyrifera (L.) C. Agardh could delay reproduction in a one‐ to two‐cell state (<50 μm) for at least 7 months when grown under nutrient‐limiting conditions. These stages retained reproductive viability and produced sporophytes within 5 d once nutrients were increased. This finding suggests that gametophytes could potentially promote recovery of M. pyrifera populations after extended periods of sporophyte absence. In addition, the time required for sporophyte production between gametophytes of the four most conspicuous kelp species in Southern California that had delayed reproduction and gametophytes that had not was compared. For these four kelp species, a delay of at least 30 d conferred a 40%–76% reduction in the time required for sporophyte production once nutrients were received. Fecundity did not decrease with delay duration, suggesting there is no apparent cost of delayed development for kelps as has been observed in other organisms. Thus, delayed development may be a viable strategy for surviving and initially dominating in environments with variable quality.  相似文献   

16.
Given the growing body of evidence on the general decline of kelp beds worldwide, it is crucial to understand the physiological responses of kelp gametophyte stages to environmental parameters. We investigated the physiological responses to light and temperature of gametophytes from two populations of Laminaria digitata in contrasting environments along the French coast of the English Channel. Gametophytes of both populations were highly tolerant of high light through an efficient down-regulation of photosynthesis triggered by the activation of the xanthophyll cycle. Temperature increases promoted photosynthesis and photosystem II showed high resistance to short-term exposure to high temperatures currently encountered in the field. Gametophytes from the two sites displayed some differences in their pigment content and photosynthetic characteristics, but low replication and difference in time of sampling precluded tests of potential local adaptation to the light conditions at each site, as observed in previously published results on adult sporophytes. Gametophytes of L. digitata appeared to be resistant to irradiation and temperature conditions currently experienced in the field, confirming their role in persistence of kelp species under stressful environmental conditions.  相似文献   

17.
Extractive seaweed aquaculture is gaining attention in the western Baltic Sea and in particular the co-cultivation with other species for bioremediation or nutrient delivery. However, there are still limitations to viable seaweed production yields in a brackish habitat with a short production period for Saccharina latissima. This investigation presents the specific growth-enhancing effect of Mytilus edulis on the seaweed early nursery stages during the hatchery and during the grow out period at sea in a Baltic fjord. Gametogenesis and juvenile sporophyte development were evaluated with and without blue mussels during 9 weeks of seaweed hatchery. The presence of mussels resulted in a significantly higher abundance of large multicellular sporophytes. After the hatchery period, seedling lines were transferred into the field and installed both in the direct vicinity of and 25 m away from mussel culture ropes. The previously observed supporting effect of mussel co-culture on seaweed development during the hatchery period was still visible after 6 months at sea. Sporophytes were larger, had a higher biomass and had higher carbon content if previously combined with mussels in the hatchery. This investigation suggests that the co-cultivation of seaweed and mussels during seaweed hatchery can increase seaweed crop yields in the following grow out period at sea, with the possibility of being certified organic.  相似文献   

18.
This paper describes a method to study the diversity of young kelp sporophytes that are recruited from the bank of microscopic stages. Small samples of rocky substratum (0.5 cm2) were collected from the low intertidal zone, which was dominated by the kelp Laminaria digitata. Samples were cultivated in the laboratory under conditions permitting gametogenesis. Sporophyte recruits in the cultures were isolated and identified at the species level using the barcoding mitochondrial marker rpl31–rns. Sixty per cent of the collected samples had at least one to a maximum of 30 kelp recruits, belonging to five different species (L. digitata, L. hyperborea, L. ochroleuca, Saccharina latissima and Sacchorhiza polyschides). As the examination of freshly collected rocky samples under a stereo microscope did not reveal any kelp sporophytes, the recruitment in these samples after culture probably occurred from the bank of microscopic forms present on the substratum. Despite the dominance of L. digitata in the field, the young sporophytes obtained after culturing were mainly S. polyschides. This study illustrates the suitability of culturing in combination with molecular identification of young sporophytes to address several key aspects of kelp ecology related to the existence of a bank of microscopic stages in the field.  相似文献   

19.
The capacity to cope with high light stress was investigated in different life-history and developmental stages of Laminaria saccharina Lamour. sporophytes and gametophytes. Changes in photosynthetic efficiency and in the level of photoinhibition were measured by in vivo fluorescence changes of photosystem II. Pigment content was studied using high performance liquid chromatography. Additionally, the morphology of the various developmental stages during the life cycle was studied by light microscopy in relation to the photosynthetic parameters. High light stress (2 h, 500 μmol.m-2.s?1) induced photoinhibition of photosynthesis with fast kinetics in older sporophytes and gametophytes. In contrast, the absolute degree of photoinhibition after light stress was higher in younger than in older sporophytes. Photosynthesis recovered faster in older sporophytes and gametophytes compared to young sporophytes. In very young sporophytes, photosynthesis did not recover fully even after 12 h exposure to low light, indicating severe photodamage. Kinetics of recovery in old sporophytes and in gametophytes showed a fast and a slow phase, whereas younger sporophytes recovered only with a slow phase, The fast phase is indicative of a decline of the photoprotective process, whereas the slow phase indicates a recovery from photodamage. The capacity to cope with high light stress in Laminaria sporophytes increased with increasing age of the thalli. The gametophytes are less sensitive to high light stress and may be selected to endure unfavorable white light conditions. Investigation of the xanthophylls showed that the higher resistance to high light is not caused solely by a higher content of xanthophyll cycle pigments. Additionally, changes in the thallus structure during the development of the sporophytes seemed to cause a higher resistance to high light. The observed changes in the ability to cope with high light in the different life-history and developmental stages of Laminaria saccharina may influence the distribution of the species on the shore.  相似文献   

20.
Kelp intergeneric laminarialean hybridizations and hybridization protocol were assessed using seven northeast Pacific kelp species: Alaria marginata Postels and Ruprecht, Costaria costata (C. A. Agardh) Saunders, Eisenia arborea Areschoug, Laminaria saccharina (L) Lamouroux, Lessoniopsis littoralis (Tilden) Reinke, Macrocystis integrifolia Bory, and Nereocystis leutkeana (Mertens) Postels and Ruprecht. Survival and development of sporophyte morphologies derived from selfings, separate males and females, and reciprocal crosses were evaluated over 30 weeks of cultivation. All cultures were initiated from cloned gametophytes. Two closely related species, Laminaria angustata Kjellman and L. japonica Areschoug, demonstrated the efficacy of long‐term (up to 30 years) cloned gametophytes in hybridization studies. Sporophyte morphologies appeared in 34%–69% of control and hybridization trials, and 6%–16% of all trials produced sporophytes in control and hybridization conditions that persisted through 30 weeks of cultivation. Sporophytes in control and hybridization conditions could appear normal or abnormal. Usually, the morphology of sporophytes in hybridizations and female controls resembled the female parent, whereas the sporophytes in male controls often had an abbreviated morphology, lacking definitive generic features. Species‐specific rDNA internal transcribed spacer molecular primers were used to determine the parentage of five putative hybrids. Only the L. japonica♀/L. angustata♂ hybrid bore both parental genomes. That negative controls could produce persistent and normal‐appearing sporophytes negates their value and emphasizes the importance of molecular confirmation in hybridization studies. These findings were applied to critique the only known wild intergeneric hybrid, Pelagophycus/Macrocystis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号