首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recombinant lambda bacteriophage clone H3 containing a human DNA segment of 14.9 kb present in one or two copies per haploid genome was isolated. In situ hybridization to human metaphase chromosomes of the 3H-labeled cloned DNA resulted in highly significant labeling (53% of cells) of band p36 of chromosome 1, such that 22% of all chromosomal grains were located on this region. Hybridization was dependent upon the presence of dextran sulfate in the hybridization mixture and was not affected by repetitive DNA competitor. These results demonstrate localization of a single copy sequence on human metaphase chromosomes.  相似文献   

3.
We have isolated a 14-kb DNA sequence containing a single homeobox from a low-stringency screen of a human genomic phage library by using heterologous homeobox sequences as probes. Chromosomal mapping of this clone using in situ hybridization to metaphase chromosomes and a panel of mouse x human somatic cell hybrids localized it to human chromosome 7p13-p15 in the region of the HOX 1 locus. We have sequenced the homeobox and show it has 100% identity to the deduced amino acid sequence of the mouse Hox-1.4 homeobox. We detect no restriction fragment length polymorphisms with the 14-kb clone, which is devoid of any moderately repetitive DNA sequences. This implies an inability of this region to tolerate change in sequence, consistent with a function highly conserved throughout evolution. The regions in the human genome where homeobox-containing loci reside share patterns of organization and sequence and have other gene loci in common, implying evolutionary constraints over these regions and providing clues on how they may have evolved.  相似文献   

4.
To contribute to the knowledge of fish genomes, we identified and characterized by means of nucleotide sequencing and physical chromosome mapping, three classes of repetitive DNAs in the genome of the South American cichlid fish Astronotus ocellatus. The first class corresponds to a satellite DNA family (AoSat) that shares similarity with a centromeric satellite DNA of the pufferfish Tetraodon nigroviridis. The second repetitive DNA class (AoRex3) is related to the retrotransposon Rex3, which is widely distributed among teleost fishes. The last repetitive element (AoLINE) shows a high similarity to the CR1-like LINE element of other teleosts. The three isolated repetitive elements are clustered in the centromeric heterochromatin of all chromosomes of the complement. The repetitive sequences are not randomly distributed in the genome, suggesting a pattern of compartmentalization on chromosomes.  相似文献   

5.
Organization of the Euplotes crassus micronuclear genome   总被引:11,自引:0,他引:11  
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

6.
A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.  相似文献   

7.
Repetitive DNA sequences in the rice genome comprise more than half of the nuclear DNA. The isolation and characterization of these repetitive DNA sequences should lead to a better understanding of rice chromosome structure and genome organization. We report here the characterization and chromosome localization of a chromosome 5-specific repetitive DNA sequence. This repetitive DNA sequence was estimated to have at least 900 copies. DNA sequence analysis of three genomic clones which contain the repeat unit indicated that the DNA sequences have two sub-repeat units of 37 bp and 19 bp, connected by 30-to 90-bp short sequences with high similarity. RFLP mapping and physical mapping by fluorescence in situ hybridization (FISH) indicated that almost all copies of the repetitive DNA sequence are located in the centromeric heterochromatic region of the long arm of chromosome 5. The strategy for cloning such repetitive DNA sequences and their uses in rice genome research are discussed.  相似文献   

8.
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

9.
The genome of common wheat has evolved through allopolyploidization of three ancestral diploid genomes. A previously identified restriction fragment length polymorphism (RFLP) marker, pTag546, has the unique feature of showing hypervariability among closely related common wheat cultivars. To understand the origin and the mode of dispersal of this hypervariable sequence in the wheat genome, the distribution and structure of the homologous sequences were studied using ancestral diploid species, tetraploid disomic substitution lines and synthetic hexaploid lines. Comparative Southern blot and PCR analyses suggested that pTag546 homologs in the tetraploid and hexaploid wheat were derived from the S genome of Aegilops speltoides. Some pTag546 homologs were found to have transposed to A and D genomes in polyploid wheat. Evidence of transposition and elimination in some synthetic hexaploid lines was also obtained by comparing their copy numbers with those in the parental lines. Southern blot analysis of a genomic clone using a contiguous subset of sequences as probes revealed a core region of hypervariability that coincided with the region containing pTag546. No obvious structural characteristics that could explain the hypervariability, however, were found around the pTag546 sequence, except for accumulation of small repetitive sequences at one border. It was concluded that pTag546 increased its copy number through yet unknown mechanism(s) of transposition to various chromosomal locations over the period of allopolyploid evolution and during the artificial genome manipulation in wheat.  相似文献   

10.
Using a mouse cDNA probe for ornithine decarboxylase (ODC), we have identified and isolated an ODC cDNA clone from a lambda gt11 recombinant library prepared from human liver cell mRNA. The 2.0-kb insert of this clone hybridizes with several mouse genomic ODC DNA restriction fragments under conditions of low stringency, but reacts with only few human DNA fragments and a polyA+ RNA species of 2.2 kb under both nonstringent and stringent hybridization conditions. This suggests that, unlike the mouse genome, there are only few ODC genes in the human genome. The human ODC DNA fragments segregate with chromosome regions 2pter----p23 and 7cen----qter in mouse X human somatic cell hybrid clones containing normal, translocated, and deleted human chromosomes. Sequences of the short arm of chromosome 2 containing the NMYC oncogene at 2p23----p24 are often involved in DNA amplification in neuroblastomas and small-cell lung cancers. However, in at least three cases--one neuroblastoma cell line, one neuroblastoma tumor, and one lung carcinoma--the ODC sequences are not coamplified with the NMYC oncogene.  相似文献   

11.
Roberts syndrome (RS) is a developmental disorder characterized by tetraphocomelia and a broad spectrum of additional clinical features. Most patients with RS exhibit characteristic cytogenetic phenotypes, which include an abnormal appearance of pericentromeric heterochromatin on metaphase chromosomes, referred to as "heterochromatic repulsion." In the present study, we use complementation of this abnormal cytogenetic phenotype as a means to identify a specific region of the normal human genome capable of rendering phenotypic correction. We screened the entire human genome, using a transient chromosome-transfer assay, and demonstrated complementation exclusively after the transfer of proximal chromosome 8p, a result subsequently confirmed by stable microcell-mediated chromosome transfer. Additionally, homozygosity mapping was used to refine the interval of this complementing locus to 8p21. The results are consistent with the notion that the single gene defect responsible for heterochromatic splaying and developmental abnormalities maps to chromosome 8p21.  相似文献   

12.
Replication fork regression in repetitive DNAs   总被引:5,自引:1,他引:4       下载免费PDF全文
Among several different types of repetitive sequences found in the human genome, this study has examined the telomeric repeat, necessary for the protection of chromosome termini, and the disease-associated triplet repeat (CTG)·(CAG)n. Evidence suggests that replication of both types of repeats is problematic and that a contributing factor is the repetitive nature of the DNA itself. Here we have used electron microscopy to investigate DNA structures formed at replication forks on large model DNAs containing these repeat sequences, in an attempt to elucidate the contributory effect that these repetitive DNAs may have on their replication. Visualization of the DNA revealed that there is a high propensity for a paused replication fork to spontaneously regress when moving through repetitive DNAs, and that this results in a four-way chickenfoot intermediate that could present a significant block to replication in vivo, possibly leading to unwanted recombination events, amplifications or deletions.  相似文献   

13.
Alpha satellite DNA is a tandemly repetitive DNA family found at the centromere of every human chromosome. Chromosome-specific subsets have been isolated for over half the chromosomes and have prove useful as markers for both genetic and physical mapping. We have developed specific oligonucleotide primer sets for polymerase chain reaction (PCR) amplification of alpha satellite DNA from chromosomes 3, 7, 13/21, 17, X, and Y. For each set of primers, PCR products amplified from human genomic DNA are specific for the centromere of the target chromosome(s), as shown by somatic cell hybrid mapping and by fluorescence in situ hybridization. These six subsets represent several evolutionarily related alpha satellite subfamilies, suggesting that specific primer pairs can be designed for most or all chromosomal subsets in the genome. The PCR products from chromosome 17 directly reveal the polymorphic nature of this subset, and a new DraI polymorphism is described. The PCR products from chromosome 13 are also polymorphic, allowing in informative cases genetic analysis of this centromeric subset distinguished from the highly homologous chromosome 21 subset. These primer sets should allow placement of individual centromeres on the proposed STS map of the human genome and may be useful for somatic cell hybrid characterization and for making in situ probes. In addition, the ability to amplify chromosome-specific repetitive DNA families directly will contribute to the structural and functional analysis of these abundant classes of DNA.  相似文献   

14.
Chinese pangolins as a representative species in the order Pholidota have highly specified morphological characters and occupy an important place in the mammalian phylogenetic tree. To obtain genomic data for this species, we have constructed a bacterial artificial chromosome (BAC) library of Chinese pangolin. The library contains 208,272 clones with an average insert size of 122.1 kb and represents approximately eight times the Chinese pangolin haploid genome (if we assume that the Chinese pangolins have a genome size similar to human). One hundred and twenty randomly-selected BAC clones were mapped onto Chinese pangolin chromosomes by fluorescence in situ hybridization (FISH), showing a largely unbiased chromosomal distribution. Several clones containing repetitive DNA and ribosomal DNA genes were also found. The BAC library and FISH mapped BAC clones are useful resources for comparative genomics and cytogenetics of mammals and in particular, the ongoing genome sequencing project of Chinese pangolins.  相似文献   

15.
Almost half of the human genome consists of repetitive DNA. Understanding what role these elements have in setting up chromatin states that underlie gene and chromosome function in complex genomes is paramount. The function of some types of repetitive DNA is obvious by virtue of their location, such as the alphoid arrays that define active centromeres. However, there are many other types of repetitive DNA whose evolutionary origins and current roles in genome biology remain unknown. One type of repetitive DNA that falls into this class is the macrosatellites. The relevance of these sequences to disease is clearly demonstrated by the 4q macrosatellite (D4Z4), whereupon contraction in the size of the array is associated with the onset of facioscapulohumeral muscular dystrophy. Here, I describe recent findings relating to the chromatin organization of D4Z4 and that of the X-linked macrosatellite DXZ4, highlighting the fact that these enigmatic sequences share more than a similar name.  相似文献   

16.
Analysis of cellular DNA insert isolated from a free replicativeplasmid rescued from human cells transformed with an SV40 vectorplasmid revealed the presence of two arrays of repetitive DNAarranged in tandem. One sequence was homologous to the consensussequence of the human satellite DNA and the adjoining sequencewas a satellite DNA sequence which consisted of repetitive unitsof 42 base pairs (bp) and was designated HR42. The degree ofhomology between repetitive units was about 92%. By Southernanalysis the HR42 sequence was detected in HHW416, a somaticcell hybrid containing human chromosome 4, but not in HDm-5,the somatic cell hybrid which has human chromosome 14. By fluorescencein situ hybridization this repetitive DNA was assigned uniquelyto the centromeric region of human chromosome 4. These resultsshow that HR42 belongs to a subfamily of satellite I DNA specificfor human chromosome 4.  相似文献   

17.
To understand the architecture of the human genome, we need a complete definition of all the repeat sequence families, as these make up the majority of human DNA. We have isolated a small DNA fragment from human chromosome 21 and have used sequence analysis of this fragment to uncover a new low copy repeat element of approximately 300 bp that we term the Mermaid repeat. This repeat is related to, but is different from, the MER 12 repeat and is interspersed in the genome. Mermaid family members that we have studied are between 81%–87% identical to our preliminary consensus sequence. Therefore, we have added a new member to the large collection of human repetitive elements. In addition, we have mapped a Mermaid repeat to a telomeric position on the long arm of human chromosome 21, at 21q22.3  相似文献   

18.
19.

Background  

Insect genomes vary widely in size, a large fraction of which is often devoted to repetitive DNA. Re-association kinetics indicate that up to 42% of the genome of the red flour beetle, Tribolium castaneum, is repetitive. Analysis of the abundance and distribution of repetitive DNA in the recently sequenced genome of T. castaneum is important for understanding the structure and function of its genome.  相似文献   

20.
The sequence of the human genome is not yet complete, and major gaps remain at the centromere region of each chromosome, which is comprised of repetitive alpha satellite DNA. In this article, we describe the sequences in the vicinity of the centromere that are included in the current genome assembly, analyze the approximately 7Mb of alpha satellite that have been assembled thus far and anticipate the nature of the sequences that remain to be accounted for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号