首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Further SAR study around the central 1,2-disubstituted phenyl of the previously disclosed Cat K inhibitor (-)-1 has demonstrated that the solvent exposed P2-P3 linker can be replaced by various 5- or 6-membered heteroaromatic rings. While some potency loss was observed in the 6-membered heteroaromatic series (IC(50)=1 nM for pyridine-linked 4 vs 0.5 nM for phenyl-linked (+/-)-1), several inhibitors showed a significantly decreased shift in the bone resorption functional assay (10-fold for pyridine 4 vs 53-fold for (-)-1). Though this shift was not reduced in the 5-membered heteroaromatic series, potency against Cat K was significantly improved for thiazole 9 (IC(50)=0.2 nM) as was the pharmacokinetic profile of N-methyl pyrazole 10 over our lead compound (-)-1.  相似文献   

2.
1-Cyanopyrrolidines have previously been reported to inhibit cysteinyl cathepsins (Falgueyret, J.-P. et al., J. Med. Chem. 2001, 44, 94). In order to optimize binding interactions for a given cathepsin and simultaneously reduce interactions with the other closely related enzymes, small peptidic substituents were introduced to the 1-cyanopyrrolidine scaffold, either at the 2-position starting with proline or at the 3-position of aminopyrrolidines. The resulting novel compounds proved to be micromolar inhibitors of cathepsin B (Cat B) but nanomolar to picomolar inhibitors of cathepsins K, L, and S (Cat K, Cat L, Cat S). Several of the compounds were >20-fold selective versus the other three cathepsins. SAR trends were observed, most notably the remarkable potency of Cat L inhibitors based on the 1-cyano-D-proline scaffold. The selectivity of one such compound, the 94 picomolar Cat L inhibitor 12, was demonstrated at higher concentrations in DLD-1 cells. Although none of the compounds in the proline series that was tested proved to be submicromolar in the in vitro bone resorption assay, two Cat K inhibitors in the 3-substituted pyrrolidine series, 24 and 25 were relatively potent in that assay.  相似文献   

3.
We report herein the design and synthesis of 4-(benzimidazol-2-yl)-1,2,5-oxadiazol-3-amine derivatives as inhibitors of p70S6 kinase. Screening hits containing the 4-(benzimidazol-2-yl)-1,2,5-oxadiazol-3-ylamine scaffold were optimized for p70S6K potency and selectivity against related kinases. Structure-based design employing an active site homology model derived from PKA led to the preparation of benzimidazole 5-substituted compounds 26 and 27 as highly potent inhibitors (Ki <1 nM) of p70S6K, with >100-fold selectivity against PKA, ROCK and GSK3.  相似文献   

4.
2-(2-Chloro-6-fluorophenyl)acetamides having 2,2-difluoro-2-aryl/heteroaryl-ethylamine P3 and oxyguanidine P1 substituents are potent thrombin inhibitors (K(i)=0.9-33.9 nM). 2-(5-Chloro-pyridin-2-yl)-2,2-difluoroethylamine was the best P3 substituent, yielding the most potent inhibitor (K(i)=0.7 nM). Replacing the P3 heteroaryl group with a phenyl ring or replacing the difluoro substitution with dimethyl or cyclopropyl groups in the linker reduced the affinity for thrombin significantly. The aminopyridine P1s also provided an increase in potency.  相似文献   

5.
Through a systematic study of structure-activity relationships, we designed potent renin inhibitors for use in dog models. In assays against dog plasma renin at neutral pH, we found that, as in previous studies of rat renin inhibitors, the structure at the P2 position appears to be important for potency. The substitution of Val for His at this position increases potency by one order of magnitude. At the P3 position, potency appears to depend on a hydrophobic side chain that does not necessarily have to be aromatic. Our results also support the approach of optimizing potency in a renin inhibitor by introducing a moiety that promotes aqueous solubility (an amino group) at the C-terminus of the substrate analogue. In the design of potent dog plasma renin inhibitors, the influence of the transition-state residue 4(S)-amino-3(S)-hydroxy-5-cyclohexylpentanoic acid (ACHPA)-commonly used as a substitute for the scissile-bond dipeptide to boost potency-is not obvious, and appears to be sequence dependent. The canine renin inhibitor Ac-paF-Pro-Phe-Val-statine-Leu-Phe-paF-NH2 (compound 15; IC50 of 1.7 nM against dog plasma renin at pH 7.4; statine, 4(S)-amino-3(S)-hydroxy-6-methylheptanoic acid; paF, para-aminophenylalanine) had a potent hypotensive effect when infused intravenously into conscious, sodium-depleted, normotensive dogs. Also, compound 15 concurrently inhibited plasma renin activity and had a profound diuretic effect.  相似文献   

6.
Inhibition of glycoside hydrolases has widespread application in treatment of diabetes, viral infections, lysosomal storage diseases and cancers. Gluco-configured tetrahydroimidazopyridines are the most potent β-glucosidase inhibitors reported to date. Using transition state mimic strategy, a series of C2-substituted gluco-configured tetrahydroimidazopyridines were designed and synthesized. Compounds 3 (K(i)=0.64 nM) and 5 (K(i)=0.58 nM) showed stronger inhibitory potency against β-glucosidase. Maestro 9.1 was used to study the structure-activity relationships by docking the compounds into the β-glucosidase active sites.  相似文献   

7.
The recombinant phage antibody system pCANTAB 5E has been used to display functionally active leech-derived tryptase inhibitor (LDTI) on the tip of the filamentous M13 phage. A limited combinatorial library of 5.2 x 10(4) mutants was created with a synthetic LDTI gene, using a degenerated oligonucleotide and the pCANTAB 5E phagemid. The mutations were restricted to the P1-P4' positions of the reactive site. Fusion phages and appropriate host strains containing the phagemids were selected after binding to thrombin and DNA sequencing. The variants LDTI-2T (K8R, I9V, S10, K11W, P12A), LDTI-5T (K8R, I9V, S10, K11S, P12L) and LDTI-10T (K8R, I9L, S10, K11D, P12I) were produced with a Saccharomyces cerevisiae expression system. The new inhibitors, LDTI-2T and -5T, prolong the blood clotting time, inhibit thrombin (Ki 302 nM and 28 nM) and trypsin (Ki 6.4 nM and 2.1 nM) but not factor Xa, plasma kallikrein or neutrophil elastase. The variant LDTI-10T binds to thrombin but does not inhibit it. The relevant reactive site sequences of the thrombin inhibiting variants showed a strong preference for arginine in position P1 (K8R) and for valine in P1' (I9V). The data indicate further that LDTI-5T might be a model candidate for generation of active-site directed thrombin inhibitors and that LDTI in general may be useful to generate specific inhibitors suitable for a better understanding of enzyme-inhibitor interactions.  相似文献   

8.
A previous reaction leading to 2-substituted 6-methyl-1-oxo-1,2-dihydrobenzo[b][1,6]naphthyridine-4-carboxylic acids has been extended to encompass a broad range of 2-substituents. Derived carboxamides, particularly 4-N-[2-(dimethylamino)ethyl], were tested for growth inhibitory properties. Potent cytotoxicity against murine P388 leukemia and Lewis lung carcinoma (LLTC) was retained for compounds bearing a remarkably diverse range of 2-substituents with a number having IC50 values <10 nM. Five of the new compounds were tested in vivo against subcutaneous colon 38 tumors in mice; a single dose (1.8 mg/kg) proved curative for the 2-(4-fluorophenyl) derivative, a further increase in potency over the very effective 2-methyl analogue reported previously.  相似文献   

9.
Several highly potent novel HCV NS3 protease inhibitors have been developed from two inhibitor series containing either a P2 trisubstituted macrocyclic cyclopentane- or a P2 cyclopentene dicarboxylic acid moiety as surrogates for the widely used N-acyl-(4R)-hydroxyproline in the P2 position. These inhibitors were optimized for anti HCV activities through examination of different ring sizes in the macrocyclic systems and further by exploring the effect of P4 substituent removal on potency. The target molecules were synthesized from readily available starting materials, furnishing the inhibitor compounds in good overall yields. It was found that the 14-membered ring system was the most potent in these two series and that the corresponding 13-, 15-, and 16-membered macrocyclic rings delivered less potent inhibitors. Moreover, the corresponding P1 acylsulfonamides had superior potencies over the corresponding P1 carboxylic acids. It is noteworthy that it has been possible to develop highly potent HCV protease inhibitors that altogether lack the P4 substituent. Thus the most potent inhibitor described in this work, inhibitor 20, displays a K(i) value of 0.41 nM and an EC(50) value of 9 nM in the subgenomic HCV replicon cell model on genotype 1b. To the best of our knowledge this is the first example described in the literature of a HCV protease inhibitor displaying high potency in the replicon assay and lacking the P4 substituent, a finding which should facilitate the development of orally active small molecule inhibitors against the HCV protease.  相似文献   

10.
Hong L  Turner RT  Koelsch G  Shin D  Ghosh AK  Tang J 《Biochemistry》2002,41(36):10963-10967
The structure of the catalytic domain of human memapsin 2 bound to an inhibitor OM00-3 (Glu-Leu-Asp-LeuAla-Val-Glu-Phe, K(i) = 0.3 nM, the asterisk denotes the hydroxyethylene transition-state isostere) has been determined at 2.1 A resolution. Uniquely defined in the structure are the locations of S(3)' and S(4)' subsites, which were not identified in the previous structure of memapsin 2 in complex with the inhibitor OM99-2 (Glu-Val-Asn-LeuAla-Ala-Glu-Phe, K(i) = 1 nM). Different binding modes for the P(2) and P(4) side chains are also observed. These new structural elements are useful for the design of new inhibitors. The structural and kinetic data indicate that the replacement of the P(2)' alanine in OM99-2 with a valine in OM00-3 stabilizes the binding of P(3)' and P(4)'.  相似文献   

11.
Novel classes of tetrahydropyrido-pyrazole thioether amines and arylalkynes that display potency against human Cathepsin S have been previously reported. Here, key pharmacophoric elements of these two classes are merged, and SAR investigations of the P4 region are described, in conjunction with re-optimization of the P5 and P1/P1′/P3 regions. Identification of meta-substituted arylalkynes with good potency and improved solubility is described.  相似文献   

12.
Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Replacements for the benzodiazepine core of an earlier lead structure 1 including 5-, 6-, and 7-membered lactams were explored. Within the 7-membered ring scaffold, phenyl substitution at various positions afforded the potent (3R)-amino-(6S)-phenyl caprolactam template. The phenylimidazolinone privileged structure gave additional potency enhancements, as 24 showed good potency in both CGRP binding (K(i)=2 nM) and cAMP (IC(50)=4 nM) assays and was orally bioavailable in rats (27%).  相似文献   

13.
Steroid sulfatase (STS) catalyzes the desulfation of biologically inactive sulfated steroids to yield biologically active desulfated steroids and is currently being examined as a target for therapeutic intervention for the treatment of breast and other steroid-dependent cancers. Here we report the synthesis of a series of 17β-arylsulfonamides of 17β-aminoestra-1,3,5(10)-trien-3-ol and their evaluation as inhibitors of STS. Some of these compounds are among the most potent reversible STS inhibitors reported to date. Introducing n-alkyl groups into the 4'-position of the 17β-benzenesulfonamide derivative resulted in an increase in potency with the n-butyl derivative exhibiting the best potency with an IC(50) of 26 nM. A further increase in carbon units (to n-pentyl) resulted in a decrease in potency. Branching of the 4'-n-propyl group resulted in a decrease in potency while branching of the 4'-n-butyl group (to a tert-butyl group) resulted in a slight increase in potency (IC(50)=18 nM). Studies with 3'- and 4'-substituted substituted 17β-benzenesulfonamides with small electron donating and electron withdrawing groups revealed the 3'-bromo and 3'-trifluoromethyl derivatives to be excellent inhibitors with IC(50)'s of 30 and 23 nM, respectively. The 17β-2'-naphthalenesulfonamide was also an excellent inhibitor (IC(50)=20 nM) while the 17β-4'-phenylbenzenesulfonamide derivative was the most potent inhibitor of all the compounds studied with an IC(50) of 9 nM.  相似文献   

14.
A new class of 4-aminoquinoline derivatives based on the natural product isatin scaffold were designed and synthesized for biological evaluation against three strains of the malaria parasite Plasmodium falciparum. These derivatives showed anti-plasmodial IC(50) values in the ranges of 1.3-0.079 and 2.0-0.050muM against a chloroquine-sensitive (D10) and two resistant (K1 and W2) strains of P. falciparum, respectively. In order to determine potential targets for this class of compounds in P. falciparum, selected compounds were also tested against the parasitic cysteine protease falcipain-2. In terms of further development of this class of isatin derivatives, two of the compounds based on a flexible alkyl chain linker and a thiosemicarbazone moiety warrant further investigation as potential anti-plasmodial leads. These two derivatives showed good in vitro activity against K1 and W2 with IC(50) values of 51 and 54nM, respectively, while retaining potency against the D10 strain with IC(50) values of 79 and 95nM, respectively. Generally speaking, the inhibitory potency of all compounds in the series against the parasites did not strongly correlate with inhibitory potency against falcipain-2 for selected compounds tested, which at best was weak to moderate, suggesting other mechanisms of inhibition may also be involved or compounds may be selectively taken up by Plasmodium falciparum.  相似文献   

15.
Three series of N-3 alkyl substituted phenytoin, nirvanol, and barbiturate derivatives were synthesized and their inhibitor potencies were tested against recombinant CYP2C19 and CYP2C9 to probe the interaction of these ligands with the active sites of these enzymes. All compounds were found to be competitive inhibitors of both enzymes, although the degree of inhibitory potency was generally much greater towards CYP2C19. Inhibitor stereochemistry did not markedly influence K(i) towards CYP2C9, and log P adequately predicted inhibitor potency for this enzyme. In contrast, stereochemistry was an important factor in determining inhibitor potency towards CYP2C19. (S)-(+)-N-3-Benzylnirvanol and (R)-(-)-N-3-benzylphenobarbital emerged as the most potent and selective CYP2C19 inhibitors, with K(i) values of < 250nM--at least two orders of magnitude greater inhibitor potency than towards CYP2C9. Both inhibitors were metabolized preferentially at their C-5 phenyl substituents, indicating that CYP2C19 prefers to orient the N-3 substituents away from the active oxygen species. These features were incorporated into expanded CoMFA models for CYP2C9, and a new, validated CoMFA model for CYP2C19.  相似文献   

16.
Pyrazole carboxylic acid amides of 5-amino-1,3,4-thiadiazole-2-sulfonamide were synthesized from 4-benzoyl-1,5-diphenyl-1H-pyrazole-3-carbonyl chloride and 4-benzoyl-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carbonyl chloride. Carbonic anhydrase isoenzymes (hCA-I and hCA-II) were purified from human erythrocyte cells by the affinity chromatography method. The inhibitory effects of 5-amino-1,3,4-thiadiazole-2-sulfonamide 1, acetazolamide 2 and new synthesized amides on these isozymes have been studied in vitro. The I(50) concentrations (the concentration of inhibitor producing a 50% inhibition of CA activity) against hydratase activity ranged from 1.2 to 2.2 nM for hCA-I and from 0.4 to 2 nM for hCA-II. The I(50) values against esterase activity ranged from 1.4 to 8 nM for hCA-I and from 1.3 to 6 nM for hCA-II. The K(i) values were observed between 8.2 x 10(- 5) to 6.2 x 10(- 4) M for hCA-I and between 2.9 x 10(- 4) to 8.2 x 10(- 4) M for hCA-II. The comparison of new synthesized amides to 5-amino-1,3,4-thiadiazole-2-sulfonamide 1, acetazolamide 2 indicated that the new synthesized compounds (18-23) inhibit CA activity more potently than the parent compounds.  相似文献   

17.
A novel class of Cathepsin B inhibitors has been developed with a 1,2,4-thiadiazole heterocycle as the thiol trapping pharmacophore. Several compounds with different dipeptide recognition sequence (i.e., P1′–P2′=Leu-Pro-OH or P2–P1=Cbz-Phe-Ala) at the C5 position and with different substituents (i.e., OMe, Ph, or COOH) at the C3 position of the 1,2,4-thiadiazole ring have been synthesized and tested for their inhibitory activities. The substituted thiadiazoles 3a–h inhibit Cat B in a time dependent, irreversible manner. A mechanism based on active-site directed inactivation of the enzyme by disulfide bond formation between the active site cysteine thiol and the sulfur atom of the heterocycle is proposed. Compound 3a (Ki=2.6 μM, ki/Ki=5630 M−1 s−1) with a C3 methoxy moiety and a Leu-Pro-OH dipeptide recognition sequence, is found to be the most potent inhibitor in this series. The enhanced inhibitory potency of 3a is a consequence of its increased enzyme binding affinity (lower Ki) rather than its increased intrinsic reactivity (higher ki). In addition, 3a is inactive against Cathepsin S, is a poor inhibitor of Cathepsin H and is >100-fold more selective for Cat B over papain.  相似文献   

18.
Since beta-tryptase is considered a critical mediator of asthma, potent tryptase inhibitors may be useful as new agents for the treatment of asthma. We investigated 4-substituted benzylamine derivatives and obtained M58539 (15h) as a potent inhibitor of beta-tryptase (IC50 = 5.0 nM) with high selectivity against other serine proteases, low molecular weight, clog P value less than 5, lack of amidino and guanidino groups, and independence of Zn2+ ion.  相似文献   

19.
A new statine derivative, 3-hydroxy-4-amino-5-mercaptopentanoic acid; cysteinylstatine (CySta), was synthesized and used to prepare a series of conformationally restricted analogues of pepstatin (Iva-Val-Val-Sta-Ala-Sta) in which the conformational constraint was introduced via a bis-sulfide connecting the appropriately substituted residues in the P1 and the P3 inhibitor side chains. The precursor peptide, Iva-Cys-Val-CySta-Ala-Iaa, was synthesized and alkylated with a series of dibromoalkanes and alkenes to produce the cyclic structures. This strategy permitted the carbon atom spacing between the P1 and the P3 inhibitor side chains to be systematically varied so as to produce inhibitors with 15-, 16-, and 17-membered ring systems. Additional non-cyclic analogues were synthesized as controls by alkylating the bisthiol intermediates with methyl iodide. The inhibitory potency of the analogues were determined against porcine pepsin and penicillopepsin by using standard enzyme kinetic assays. The cyclic inhibitor were found to be potent inhibitors of both aspartic proteases; inhibitor that contained a trans-2-butene link between the two sulfur atoms was found to be the most potent inhibitor with a Ki less than 1 nM against pepsin and 3.94 nM against penicillopepsin. This series of compounds illustrates a new type of conformational restriction that can be used to probe for the bioactive conformation of peptides.  相似文献   

20.
The present study examines whether and to what extent the profiles of proteolytic-related genes are altered in atrophying muscle during prolonged food deprivation. Long-term fasted animals exhibited three metabolic phases characterized by changes in lipid and protein utilization. Starvation induced an increase in some proteolytic gene expressions during P2 of fasting, especially for Cat L (by 3-fold). In P3, the fasting-induced enhancement of mRNA expression involved all proteolytic pathways and was much more pronounced than in P2 for pUb, E2(14k), CAPN3, and Cat B, D, and H (by 2- to 4-fold), for C2, C5, and S5a (by 5- to 6-fold), and mainly for Cat L, C3, and C8 (by 10- to 15-fold). At the molecular level, it is concluded that the three proteolytic systems found in skeletal muscle are selectively induced in P2 of fasting and coordinately upregulated in late fasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号