首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Talebian F  Liu JQ  Liu Z  Khattabi M  He Y  Ganju R  Bai XF 《PloS one》2012,7(2):e31442
CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16 melanoma cells inhibited tumor formation and growth in C57BL/6 mice but not in Rag1−/−C57BL/6 mice. However, i.v. injection of CD200-positive B16 melanoma cells dramatically inhibited tumor foci formation in the lungs of both C57BL/6 and Rag1−/−C57BL6 mice. Flow cytometry analysis revealed higher expression of CD200R in Gr1+ myeloid cells in the lung than in peripheral myeloid cells. Depletion of Gr1+ cells or stimulation of CD200R with an agonistic antibody in vivo dramatically inhibited tumor foci formation in the lungs. In addition, treatment with tumor antigen specific CD4 or CD8 T cells or their combination yielded a survival advantage for CD200 positive tumor bearing mice over mice bearing CD200-negative tumors. Taken together, we have revealed a novel role for CD200-CD200R interaction in inhibiting tumor formation and metastasis. Targeting CD200R may represent a novel approach for cancer immunotherapy.  相似文献   

2.
The role of perforin, IFN-gamma, and TNF-alpha in anti-tumor CD8 T cell immunity was examined in a new tumor model using a CD8 T cell epitope (GP33) derived from lymphocytic choriomeningitis virus as a tumor-associated Ag. In contrast with parental 3LL-A9 (A9) Lewis lung carcinoma cells that progressively grow in C57BL/6 mice, s.c. injection of GP33-transfected A9GP33 tumor cells induced a protective GP33-specific CD8 T cell response that led to complete tumor cell elimination. Tumor regression was dependent on perforin, IFN-gamma, or TNF-alpha, because A9GP33 tumors developed in mice deficient in one of these genes. A9GP33 tumors arising in perforin- and IFN-gamma-deficient mice represented GP33 Ag-loss variants, demonstrating that GP33-specific CD8 T cells from these mice were able to exert an Ag selection pressure. In contrast, tumor cells growing in TNF-alpha knock-out mice still expressed the tumor-associated GP33 peptide despite the presence of activated GP33-specific CD8 T cells. These findings provide evidence for a crucial role of TNF-alpha in A9 tumor cell elimination by CD8 T cells in vivo.  相似文献   

3.
4.
Recent reports suggested a correlation between decreased expression of tumor cell MHC class I Ag and increased susceptibility to NK cells. These studies led to the hypothesis that tumor cells displaying reduced levels of MHC class I Ag have reduced tumorigenicity in vivo because they are eliminated from the host by endogenous NK cells. The present studies use the murine hepatoma BW7756 and a spontaneous H-2Kb loss variant, Hepa-1, to test this hypothesis. The parental BW7756 tumor is highly malignant in syngeneic C57L/J hosts while Hepa-1 cells do not give rise to tumors, suggesting that the loss of H-2Kb Ag expression correlates with decreased tumorigenicity and NK susceptibility. Hepa-1 cells were therefore transfected with an H-2Kb gene to generate H-2Kb Ag expressing clones. The resulting clones were tested for tumorigenicity. Syngeneic or NK-deficient C57BL/6-beige/beige mice challenged with Hepa-1 or the H-2Kb transfectants rejected the cells, suggesting that reexpression of H-2Kb Ag does not restore tumorigenicity and that NK cells are not involved in Hepa-1 rejection. In vitro H-2Kb Ag-negative and -positive Hepa-1 cells are equally susceptible to tilorone-boosted NK cells, indicating that MHC class I Ag expression also does not affect in vitro NK susceptibility. Tumor challenged athymic nude and sublethally irradiated syngeneic mice develop tumors demonstrating that T cells are probably responsible for rejection of the Hepa-1 tumor, and that H-2Kb Ag expression has no effect on rejection. Inasmuch as the expression of H-2Kb Ag on Hepa-1 cells does not effect tumorigenicity or in vitro NK susceptibility, the previously reported association between reduced MHC class I Ag levels and increased NK susceptibility is not universally applicable.  相似文献   

5.
Upon immunization and restimulation with tumors induced by the endogenous AKR/Gross murine leukemia virus (MuLV), C57BL/6 mice generate vigorous H-2K(b)-restricted cytotoxic T-lymphocyte (CTL) responses to a determinant (KSPWFTTL) derived from the p15E transmembrane portion of the viral envelope glycoprotein. By contrast, the highly homologous determinant RSPWFTTL, expressed by tumor cells induced by Friend/Moloney/Rauscher (FMR) MuLV, is not immunogenic, even when presented to the immune system as vaccinia virus-encoded cytosolic or endoplasmic reticulum (ER)-targeted minigene products. Such minigene products are usually highly immunogenic since they bypass the need for cells to liberate the peptide or transport the peptide into the ER by the transporter associated with antigen processing (TAP). Using KSPWFTTL-specific CTLs that cross-react with RSPWFTTL, we previously demonstrated that presentation of RSPWFTTL from its natural viral gene product is TAP dependent. Here, we show first that C57BL/6 mice express mRNA encoding RSPWFTTL but not KSPWFTTL and second that the ER-targeted RSPWFTTL minigene product is highly immunogenic in C57BL/6 mice with a targeted deletion in TAP1. These findings provide the initial demonstration of TAP-dependent tolerance induction to a specific self peptide and demonstrate that this contributes to the differential recognition of RSPWFTTL and KSPWFTTL by C57BL/6 mice.  相似文献   

6.
PURPOSE: We wished to determine whether virally- induced endothelial tumors are rejected by CD4 and CD8 lymphocytes, and whether there are differences in requirements for costimulation in the rejection of these tumors by lymphocyte subsets. EXPERIMENTAL DESIGN: We have developed a model of endothelial tumorigenesis through the sequential introduction of SV40 large T antigen and oncogenic H-ras into endothelial cells. These cells (SVR cells) form highly aggressive angiosarcomas in immunocompromised mice, but do not grow in syngeneic C57BL/6 mice. Using both acute blockade with systemic administration of antibodies and mice genetically deficient in the costimulatory molecules CD28, CD40, and CD40L, we have delineated the requirements of costimulation required to reject this virally-induced endothelial tumor. RESULTS: Control of SVR angiosarcoma is mediated through T lymphocytes, and both CD4 and CD8 lymphocytes are capable of controlling SVR angiosarcoma growth in vivo. Mice genetically deficient in CD28, CD40, and CD40L were able to reject SVR tumors, but depletion of these mice of CD8, but not CD4 cells led to rapid tumor growth. This data suggests that CD4 mediated rejection has a greater dependence of costimulation than CD8 mediated rejection. Surprisingly, acute depletion of costimulatory molecules in immunocompetent C57BL/6 mice led to rapid tumor growth. CONCLUSIONS: Significant differences exist in the immune status of mice acutely depleted of costimulatory molecules versus genetically deficient mice. Our results suggest that acute depletion is more immunosuppressive than genetic depletion. Humans who undergo costimulatory blockade may require periodic surveillance for virally-induced tumors.  相似文献   

7.
Splenic NK1.1+CD4+ T cells that express intermediate levels of TCR alpha beta molecules (TCRint) and the DX5 Ag (believed to identify an equivalent population in NK1.1 allelic negative mice) possess the ability to rapidly produce high quantities of immunomodulatory cytokines, notably IL-4 and IFN-gamma, upon primary TCR activation in vivo. Indeed, only T cells expressing the NK1.1 Ag appear to be capable of this function. In this study, we demonstrate that splenic NK1.1-negative TCRintCD4+ T cells, identified on the basis of Fc gamma R expression, exist in naive NK1.1 allelic positive (C57BL/6) and negative (C3H/HeN) mice with the capacity to produce large amounts of IL-4 and IFN-gamma after only 8 h of primary CD3 stimulation in vitro. Furthermore, a comparison of the amounts of early cytokines produced by Fc gamma R+CD4+TCRint T cells with NK1. 1+CD4+ or DX5+CD4+TCRint T cells, simultaneously isolated from C57BL/6 or C3H/HeN mice, revealed strain and population differences. Thus, Fc gamma R defines another subpopulation of splenic CD4+TCRint cells that can rapidly produce large concentrations of immunomodulatory cytokines, suggesting that CD4+TCRint T cells themselves may represent a unique family of immunoregulatory CD4+ T cells whose members include Fc gamma R+CD4+ and NK1.1/DX5+CD4+ T cells.  相似文献   

8.
Immunotherapy of established solid tumors is rarely achieved, and the mechanisms leading to success remain to be elucidated. We previously showed that extended control of advanced-stage autochthonous brain tumors is achieved following adoptive transfer of naive C57BL/6 splenocytes into sublethally irradiated line SV11 mice expressing the SV40 T Ag (T Ag) oncoprotein, and was associated with in vivo priming of CD8(+) T cells (T(CD8)) specific for the dominant epitope IV (T Ag residues 404-411). Using donor lymphocytes derived from mice that are tolerant to epitope IV or a newly characterized transgenic mouse line expressing an epitope IV-specific TCR, we show that epitope IV-specific T(CD8) are a necessary component of the donor pool and that purified naive epitope IV-specific T(CD8) are sufficient to promote complete and rapid regression of established tumors. While transfer of naive TCR-IV cells alone induced some initial tumor regression, increased survival of tumor-bearing mice required prior conditioning of the host with a sublethal dose of gamma irradiation and was associated with complete tumor eradication. Regression of established tumors was associated with rapid accumulation of TCR-IV T cells within the brain following initial priming against the endogenous T Ag in the peripheral lymphoid organs. Additionally, persistence of functional TCR-IV cells in both the brain and peripheral lymphoid organs was associated with long-term tumor-free survival. Finally, we show that production of IFN-gamma, but not perforin or TNF-alpha, by the donor lymphocytes is critical for control of autochthonous brain tumors.  相似文献   

9.
Therapeutic use of IL-2 can generate antitumor immunity; however, a variety of different mechanisms have been reported. We injected IL-2 intratumorally (i.t.) at different stages of growth, using our unique murine model of mesothelioma (AE17; and AE17 transfected with secretory OVA (AE17-sOVA)), and systematically analyzed real-time events as they occurred in vivo. The majority of mice with small tumors when treatment commenced displayed complete tumor regression, remained tumor free for >2 mo, and survived rechallenge with AE17 tumor cells. However, mice with large tumors at the start of treatment failed to respond. Timing experiments showed that IL-2-mediated responses were dependent upon tumor size, not on the duration of disease. Although i.t. IL-2 did not alter tumor Ag presentation in draining lymph nodes, it did enhance a previously primed, endogenous, tumor-specific in vivo CTL response that coincided with regressing tumors. Both CD4(+) and CD8(+) cells were required for IL-2-mediated tumor eradication, because IL-2 therapy failed in CD4(+)-depleted, CD8(+)-depleted, and both CD4(+)- and CD8(+)-depleted C57BL/6J animals. Tumor-infiltrating CD8(+) T cells, but not CD4(+) T cells, increased in association with a marked reduction in tumor-associated vascularity. Destruction of blood vessels required CD8(+) T cells, because this did not occur in nude mice or in CD8(+)-depleted C57BL/6J mice. These results show that repeated doses of i.t. (but not systemic) IL-2 mediates tumor regression via an enhanced endogenous tumor-specific CTL response concomitant with reduced vasculature, thereby demonstrating a novel mechanism for IL-2 activity.  相似文献   

10.
The transporter associated with antigen processing (TAP) and the major histocompatibility complex class I (MHC-I), two important components of the MHC-I antigen presentation pathway, are often deficient in tumor cells. The restoration of their expression has been shown to restore the antigenicity and immunogenicity of tumor cells. However, it is unclear whether TAP and MHC-I expression in tumor cells can affect the induction phase of the T cell response. To address this issue, we expressed viral antigens in tumors that are either deficient or proficient in TAP and MHC-I expression. The relative efficiency of direct immunization or immunization through cross-presentation in promoting adaptive T cell responses was compared. The results demonstrated that stimulation of animals with TAP and MHC-I proficient tumor cells generated antigen specific T cells with greater killing activities than those of TAP and MHC-I deficient tumor cells. This discrepancy was traced to differences in the ability of dendritic cells (DCs) to access and sample different antigen reservoirs in TAP and MHC-I proficient versus deficient cells and thereby stimulate adaptive immune responses through the process of cross-presentation. In addition, our data suggest that the increased activity of T cells is caused by the enhanced DC uptake and utilization of MHC-I/peptide complexes from the proficient cells as an additional source of processed antigen. Furthermore, we demonstrate that immune-escape and metastasis are promoted in the absence of this DC 'arming' mechanism. Physiologically, this novel form of DC antigen sampling resembles trogocytosis, and acts to enhance T cell priming and increase the efficacy of adaptive immune responses against tumors and infectious pathogens.  相似文献   

11.
Members of the papain family of cysteine proteases (cathepsins) mediate late stage processing of MHC class II-bound invariant chain (Ii), enabling dissociation of Ii, and binding of antigenic peptide to class II molecules. Recognition of cell surface class II/Ag complexes by CD4(+) T cells then leads to T cell activation. Herein, we demonstrate that a pan-active cathepsin inhibitor, SB-331750, attenuated the processing of whole cell Ii p10 to CLIP by Raji cells, and DBA/1, SJL/J, and C57BL/6 splenocytes. In Raji cells and C57BL/6 splenocytes, SB-331750 inhibited class II-associated Ii processing and reduced surface class II/CLIP expression, whereas in SB-331750-treated DBA/1 and SJL/J splenocytes, class II-associated Ii processing intermediates were undetectable. Incubation of lymph node cells/splenocytes from collagen-primed DBA/1 mice and myelin basic protein-primed SJL/J mice with Ag in the presence of SB-331750 resulted in concentration-dependent inhibition of Ag-induced proliferation. In vivo administration of SB-331750 to DBA/1, SJL/J, and C57BL/6 mice inhibited splenocyte processing of whole cell Ii p10 to CLIP. Prophylactic administration of SB-331750 to collagen-immunized/boosted DBA/1 mice delayed the onset and reduced the severity of collagen-induced arthritis (CIA), and reduced paw tissue levels of IL-1beta and TNF-alpha. Similarly, treatment of myelin basic protein-primed SJL/J lymph node cells with SB-331750 delayed the onset and reduced the severity of adoptively transferred experimental autoimmune encephalomyelitis (EAE). Therapeutic administration of SB-331750 reduced the severity of mild/moderate CIA and EAE. These results indicate that pharmacological inhibition of cathepsins attenuates CIA and EAE, potentially via inhibition of Ii processing, and subsequent Ag-induced T cell activation.  相似文献   

12.
Inbred strains of mice were immunized with p190-3, a 38-kDa recombinant protein derived from p190, a major merozoite surface Ag of the malaria parasite Plasmodium falciparum. Ag-specific proliferative T cell responses were obtained in H-2b, H-2d, and H-2k mouse strains. Surprisingly, mice of the H-2b haplotype (e.g., C57BL/6) did not give a measurable antibody response to the recombinant protein administered in Freund's adjuvant, but CD8+/CD4- as well as CD4+/CD8- T cells specific for p190-3 could be obtained after in vivo priming and in vitro selection with Ag. Distinct epitopes of p190-3 recognized by the CD8+ and CD4+ T cells from C57BL/6 mice were identified. The CD8+ T cells could kill H-2b APC in the presence of the appropriate epitope-containing peptide. The p190-3-specific CD4+ cells isolated from C57BL/6 mice were of the Th1 type. In contrast, Th2 cells, but no CD8+ T cells were present in a p190-3-specific line from BALB/c mice, which give good antibody responses to p190-3.  相似文献   

13.
A major class of tumors lack expression of the transporters associated with antigen processing (TAP). These proteins are essential for delivery of antigenic peptides into the lumen of the endoplasmic reticulum (ER) and subsequent assembly with nascent major histocompatibility complex (MHC) class I, which results in cell surface presentation of the trimeric complex to cytolytic T lymphocytes. Cytolytic T lymphocytes are major effector cells in immunosurveillance against tumors. Here we have tested the hypothesis that TAP downregulation in tumors allows immunosubversion of this effector mechanism, by establishing a model system to examine the role of TAP in vivo in restoring antigen presentation, immune recognition, and effects on malignancy of the TAP-deficient small-cell lung carcinoma, CMT.64. To test the potential of providing exogenous TAP in cancer therapies, we constructed a vaccinia virus (VV) containing the TAP1 gene and examined whether VV-TAP1 could reduce tumors in mice. The results demonstrate that TAP should be considered for inclusion in cancer therapies, as it is likely to provide a general method for increasing immune responses against tumors regardless of the antigenic complement of the tumor or the MHC haplotypes of the host.  相似文献   

14.
The systemic adoptive transfer of tumor-sensitized T cells, activated ex vivo, can eliminate established intracranial tumors. Regression of MHC class II negative MCA 205 fibrosarcomas occurs optimally following adoptive transfer of both CD4 and CD8 tumor-sensitized T cells, indicating an important function for tumor-infiltrating APC. Here, we demonstrate that during an effector response, indirect presentation of tumor Ags to transferred T cells is sufficient to mediate intracranial tumor regression. BALB/c --> CB6F1 (H-2bxd) bone marrow chimeras were challenged with the MCA 205 fibrosarcoma (H-2b). The tumor grew progressively in the H-2b-tolerant chimeras and stimulated an immune response in tumor-draining lymph nodes. Tumor-sensitized lymph node T cells were activated ex vivo with anti-CD3 and IL-2, then adoptively transferred to sublethally irradiated BALB/c or C57BL/6 recipients bearing established intracranial MCA 205 tumors. The transferred T cells eradicated MCA 205 tumors in BALB/c recipients and demonstrated tumor specificity, but had no therapeutic efficacy in the C57BL/6 recipients. These data establish that tumor-associated host cell constituents provide sufficient Ag presentation to drive effector T cell function in the complete absence of direct tumor recognition. This effector mechanism has an evident capacity to remain operative in circumstances of immune escape, where the tumor does not express the relevant MHC molecules, and may have importance even at times when direct CTL recognition also remains operative.  相似文献   

15.
CD8+ T lymphocytes play an important role in the control of visceral leishmaniasis in non self-cure mice (e.g. BALB/c). In the present study, the mode of action of CD8+ T cells and their in vivo contribution to immunity was addressed in self-curing C57BL/6 mice. During the course of the experimental infection, CD8+ T cells specific for Leishmania infantum (L. infantum) developed and apoptotic cell death subsequently followed. They exhibited perforin-dependent cytotoxicity and a T(C)1 profile characterized by secretion of IFN-gamma and CC chemokines. Despite evidence for activation of CD8+ T lymphocytes, both intravenous and intradermal infection of beta2-microglobulin deficient C57BL/6 mice with L. infantum showed that these knockout animals had similar parasite loads to their wild-type counterpart. Lymphocytes from the beta2-microglobulin deficient mice produced high levels of IFN-gamma, reflecting a T(H)1 response to the parasite, which was apparently sufficient for the immunologic control of the pathogen. Thus, despite their functional activation, CD8+ T lymphocytes do not appear to play a primary role in parasite restraint in the self-curing mouse model of visceral leishmaniasis, as shown using beta2-microglobulin deficient mice which do not produce functional CD8+ T lymphocytes.  相似文献   

16.
Dendritic cells (DC) are potent APCs. In this study, murine bone marrow-derived DC were transfected with RNA encoding the MUC1 Ag that is aberrantly overexpressed in human breast and other carcinomas. The MUC1 RNA-transfected DC exhibited cell surface expression of MUC1 and costimulatory molecules. After injection at the base of the tail, the transfected DC were detectable in inguinal lymph nodes by dual immunochemical staining. Vaccination of wild-type mice with MUC1 RNA-transfected DC induced anti-MUC1 immune responses against MUC1-positive MC38/MUC1, but not MUC1-negative, tumor cells. Mice immunized with the transfected DC were protected against challenge with MC38/MUC1 tumor cells. Furthermore, mice with established MC38/MUC1 tumors were eliminated after receiving the vaccination. CTLs isolated from mice immunized with the transfected DC exhibited specific cytolytic activity against MC38/MUC1 tumor cells. In contrast to these findings, there was little if any anti-MUC1 immunity induced with the transfected DC in MUC1 transgenic (MUC1.Tg) mice. However, coadministration of the transfected DC and IL-12 reversed the unresponsiveness to MUC1 Ag in MUC1.Tg mice and induced MUC1-specific immune responses. These findings demonstrate that vaccination of DC transfected with MUC1 RNA and IL-12 reverses tolerance to MUC1 and induces immunity against MUC1-positive tumors.  相似文献   

17.
The T cell repertoire is shaped by the processes of positive and negative selection. During development, the TCR binds self peptide-MHC complexes in the thymus, and the kinetics of this interaction are thought to determine the thymocyte's fate. For development of CD8(+) T cells, the data supporting such a model have been obtained using fetal thymic organ culture. To confirm the fidelity of this model in vivo, we studied development of OT-I TCR-transgenic mice that expressed different individual K(b) binding peptides in thymic epithelial cells under the control of the human keratin 14 promoter. We used a system that allowed TAP-independent expression of the peptide-MHC complex, such that the ability of given peptides to restore positive selection in TAP(o) mice could be assessed. We found that transgenic expression of a TCR antagonist peptide (E1) in vivo efficiently restored positive selection of OT-I T cells in TAP(o) mice. An unrelated transgenic peptide (SIY) did not restore selection of OT-I T cells, nor did the E1-transgenic peptide restore selection of an unrelated receptor (2C), showing that positive selection is peptide specific in vivo, as observed in organ cultures. Neither E1 nor SIY transgenes increased the polyclonal CD8 T cell repertoire size in non-TCR-transgenic animals, arguing that single class I binding peptides do not detectably affect the size of the CD8 T cell repertoire when expressed at low levels. We also observed that OT-I T cells selected in TAP(o)-E1 mice were functional in their response to Ag; however, there was a lag in this response, suggesting that the affinity of the TCR interaction with MHC-self peptide can result in fine-tuning of the T cell response.  相似文献   

18.
The role of CD4(+) vs CD8(+) T cells in contact hypersensitivity (CHS) remains controversial. In this study, we used gene knockout (KO) mice deficient in CD4(+) or CD8(+) T cells to directly address this issue. Mice lacking either CD4(+) or CD8(+) T cells demonstrated depressed CHS responses to dinitrofluorobenzene and oxazolone compared with wild-type C57BL/6 mice. The depression of CHS was more significant in CD8 KO mice than in CD4 KO mice. Furthermore, in vivo depletion of either CD8(+) T cells from CD4 KO mice or CD4(+) T cells from CD8 KO mice virtually abolished CHS responses. Lymph node cells (LNCs) from hapten-sensitized CD4 and CD8 KO mice showed a decreased capacity for transferring CHS. In vitro depletion of either CD4(+) T cells from CD8 KO LNCs or CD8(+) T cells from CD4 KO LNCs resulted in a complete loss of CHS transfer. LNCs from CD4 and CD8 KO mice produced significant amounts of IFN-gamma, indicating that both CD4(+) and CD8(+) T cells are able to secrete IFN-gamma. LNCs from CD8, but not CD4, KO mice were able to produce IL-4 and IL-10, suggesting that IL-4 and IL-10 are mainly derived from CD4(+) T cells. Intracellular cytokine staining of LNCs confirmed that IFN-gamma-positive cells consisted of CD4(+) (Th1) and CD8(+) (type 1 cytotoxic T) T cells, whereas IL-10-positive cells were exclusively CD4(+) (Th2) T cells. Collectively, these results suggest that both CD4(+) Th1 and CD8(+) type 1 cytotoxic T cells are crucial effector cells in CHS responses to dinitrofluorobenzene and oxazolone in C57BL/6 mice.  相似文献   

19.
Proliferation of islet-associated leukocytes occurred when isolated islets from 20-wk-old female nonobese diabetic (NOD) mice were cultured with 10 U/ml rIL-2 for 7 days. Co-culture of these leukocytes with freshly isolated islets from 6- to 8-wk-old NOD donors in the presence of 1 U/ml rIL-2 produced islet structural deformation within 24 h and islet cytolysis within 48 h. Three lines of evidence suggest that these leukocytes were composed mainly of CTL specific for islet cells. First, morphologically, these proliferating cells adhered to NOD islets at 6 h and killed islets within 48 h of culture, but these phenomena could not be observed in the other tissues from NOD mice. These islet-derived cells were cytotoxic to NOD islet cells in a 51Cr-release assay, whereas no appreciable cytotoxicity was observed when NOD Con A-induced splenic blasts or fibroblasts were used as targets. Second, a flow cytometric analysis showed that these cells consisted of 97% Thy-1.2, 69% Lyt-2, 8% L3T4, and 4% asialo-GM1-positive cells, whereas Mac-1-positive cells could not be seen in these assays. After treatment with anti-Thy-1.2 or Lyt-2 mAb and C, these cells lost their activity to lyse NOD islet cells. However, these cells still had a full killing activity after the depletion of L3T4 or asialo GM1-positive cells. Third, islet cells from BALB/c, DBA/2, and B10.GD mice which share the same H-2K Ag with NOD mice were susceptible to cytolytic activity of these cells, whereas islet cells from NON, C57BL/6, C57BL/10, and C3H mice remained intact. Furthermore, anti-Kd antibody was capable of blocking this cytolysis. These results suggest that CTL expressing Thy-1.2 and Lyt-2 phenotypes appear to recognize the islet cell Ag with the restriction of MHC class I Kd, and then destroy NOD islet cells.  相似文献   

20.
Current knowledge of the processing of viral Ags into MHC class I-associated ligands is based almost completely on in vitro studies using nonprofessional APCs (pAPCs). This is two steps removed from real immune responses to pathogens and vaccines, in which pAPCs activate naive CD8(+) T cells in vivo. Rational vaccine design requires answers to numerous questions surrounding the function of pAPCs in vivo, including their abilities to process and present peptides derived from endogenous and exogenous viral Ags. In the present study, we characterize the in vivo dependence of Ag presentation on the expression of TAP by testing the immunogenicity of model Ags synthesized by recombinant vaccinia viruses in TAP1(-/-) mice. We show that the efficiency of TAP-independent presentation in vitro correlates with TAP-independent activation of naive T cells in vivo and provide the first in vivo evidence for proteolytic processing of antigenic peptides in the secretory pathway. There was, however, a clear exception to this correlation; although the presentation of the minimal SIINFEKL determinant from chicken egg OVA in vitro was strictly TAP dependent, it was presented in a TAP-independent manner in vivo. In vivo presentation of the same peptide from a fusion protein retained its TAP dependence. These results show that determinant-specific processing pathways exist in vivo for the generation of antiviral T cell responses. We present additional findings that point to cross-priming as the likely mechanism for these protein-specific differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号