首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SAC1 gene product has been implicated in the regulation of actin cytoskeleton, secretion from the Golgi, and microsomal ATP transport; yet its function is unknown. Within SAC1 is an evolutionarily conserved 300-amino acid region, designated a SAC1-like domain, that is also present at the amino termini of the inositol polyphosphate 5-phosphatases, mammalian synaptojanin, and certain yeast INP5 gene products. Here we report that SAC1-like domains have intrinsic enzymatic activity that defines a new class of polyphosphoinositide phosphatase (PPIPase). Purified recombinant SAC1-like domains convert yeast lipids phosphatidylinositol (PI) 3-phosphate, PI 4-phosphate, and PI 3,5-bisphosphate to PI, whereas PI 4,5-bisphosphate is not a substrate. Yeast lacking Sac1p exhibit 10-, 2.5-, and 2-fold increases in the cellular levels of PI 4-phosphate, PI 3,5-bisphosphate, and PI 3-phosphate, respectively. The 5-phosphatase domains of synaptojanin, Inp52p, and Inp53p are also catalytic, thus representing the first examples of an inositol signaling protein with two distinct lipid phosphatase active sites within a single polypeptide chain. Together, our data provide a long sought mechanism as to how defects in Sac1p overcome certain actin mutants and bypass the requirement for yeast phosphatidylinositol/phosphatidylcholine transfer protein, Sec14p. We demonstrate that PPIPase activity is a key regulator of membrane trafficking and actin cytoskeleton organization and suggest signaling roles for phosphoinositides other than PI 4,5-bisphosphate in these processes. Additionally, the tethering of PPIPase and 5-phosphatase activities indicate a novel mechanism by which concerted phosphoinositide hydrolysis participates in membrane trafficking.  相似文献   

2.
We recently isolated from the filamentous fungus Trichoderma reesei (Hypocrea jecorina) a gene encoding RHOIII as a multicopy suppressor of the yeast temperature-sensitive secretory mutation, sec15-1. To characterize this gene further, we tested its ability to suppress other late-acting secretory mutations. The growth defect of yeast strains with sec1-1, sec1-11, sec3-2, sec6-4 and sec8-9 mutations was suppressed. Expression of rho3 also improved the impaired actin organization of sec15-1 cells at +38 degrees C. Overproduction of yeast Rho3p using the same expression vector as T. reesei RHOIII appeared to be toxic in sec3-101, sec5-24, sec8-9, sec10-2 and sec15-1 cells. When expressed from the GAL1 promoter, RHO3 suppressed the growth defect of sec1 at the restrictive temperature and inhibited the growth of sec3-101 at the permissive temperature. Disruption of the rho3 gene in the T. reesei genome did not affect the hyphal or colony morphology nor the cellular cytoskeleton organization. Furthermore, the growth of T. reesei was not affected on glucose by the rho3 disruption. Instead, both growth and protein secretion of T. reesei in cellulose cultures was remarkably decreased in rho3 disruptant strains when compared with the parental strain. These results suggest that rho3 is involved in secretion processes in T. reesei.  相似文献   

3.
The Saccharomyces cerevisiae SAC1 gene was identified via independent analyses of mutations that modulate yeast actin function and alleviate the essential requirement for phosphatidylinositol transfer protein (Sec14p) activity in Golgi secretory function. The SAC1 gene product (Sac1p) is an integral membrane protein of the endoplasmic reticulum and the Golgi complex. Sac1p shares primary sequence homology with a subfamily of cytosolic/peripheral membrane phosphoinositide phosphatases, the synaptojanins, and these Sac1 domains define novel phosphoinositide phosphatase modules. We now report the characterization of a rat counterpart of Sac1p. Rat Sac1 is a ubiquitously expressed 65-kDa integral membrane protein of the endoplasmic reticulum that is found at particularly high levels in cerebellar Purkinje cells. Like Sac1p, rat Sac1 exhibits intrinsic phosphoinositide phosphatase activity directed toward phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 3,5-bisphosphate substrates, and we identify mutant rat sac1 alleles that evoke substrate-specific defects in this enzymatic activity. Finally, rat Sac1 expression in Deltasac1 yeast strains complements a wide phenotypes associated with Sac1p insufficiency. Biochemical and in vivo data indicate that rat Sac1 phosphatidylinositol-4-phosphate phosphatase activity, but not its phosphatidylinositol-3-phosphate or phosphatidylinositol-3, 5-bisphosphate phosphatase activities, is essential for the heterologous complementation of Sac1p defects in vivo. Thus, yeast Sac1p and rat Sac1 are integral membrane lipid phosphatases that play evolutionary conserved roles in eukaryotic cell physiology.  相似文献   

4.
In Saccharomyces cerevisiae, the SAC1 gene encodes a polyphosphoinositide phosphatase (PPIPase) that modulates the levels of phosphoinositides, which are key regulators of a number of signal transduction processes. SAC1p has been implicated in multiple cellular functions: actin cytoskeleton organization, secretory functions, inositol metabolism, ATP transport, and multiple-drug sensitivity. Here, we describe the characterization of three genes in Arabidopsis thaliana, AtSAC1a, AtSAC1b, and AtSAC1c, encoding proteins similar to those of yeast SAC1p. We demonstrated that the three AtSAC1 proteins are functional homologs of the yeast SAC1p because they can rescue the cold-sensitive and inositol auxotroph yeast sac1-null mutant strain. The fact that Arabidopsis and yeast SAC1 genes derived from a common ancestor suggests that this plant multigenic family is involved in the phosphoinositide pathway and in a range of cellular functions similar to those in yeast. Using GFP fusion experiments, we demonstrate that the three AtSAC1 proteins are targeted to the endoplasmic reticulum. Their expression patterns are overlapping, with at least two members expressed in each organ. Remarkably, AtSAC1 genes are not expressed during seed development, and therefore additional phosphatases are required to control phosphoinositide levels in seeds.  相似文献   

5.
The SEC14 gene encodes an essential phosphatidylinositol (PtdIns) transfer protein required for formation of Golgi-derived secretory vesicles in yeast. Suppressor mutations that rescue temperature-sensitive sec14 mutants provide an approach for determining the role of Sec14p in secretion. One suppressor, sac1-22, causes accumulation of PtdIns(4)P. SAC1 encodes a phosphatase that can hydrolyze PtdIns(4)P and certain other phosphoinositides. These findings suggest that PtdIns(4)P is limiting in sec14 cells and that elevation of PtdIns(4)P production can suppress the secretory defect. Correspondingly, we found that PtdIns(4)P levels were decreased significantly in sec14-3 mutants shifted to 37 degrees C and that sec14-3 cells could grow at an otherwise nonpermissive temperature (34 degrees C) when carrying a plasmid overexpressing PIK1, encoding one of two essential PtdIns 4-kinases. This effect is specific because overexpression of the other PtdIns 4-kinase gene (STT4) or a PtdIns 3-kinase gene (VPS34) did not rescue sec14-3 cells. To further address Pik1p function in secretion, two different pik1(ts) mutants were examined. Upon shift to restrictive temperature (37 degrees C), the PtdIns(4)P levels dropped by about 60% in both pik1(ts) strains within 1 h. During the same period, cells displayed a reduction (40-50%) in release of a secreted enzyme (invertase). However, similar treatment did not effect maturation of a vacuolar enzyme (carboxypeptidase Y). These findings indicate that, first, PtdIns(4)P limitation is a major contributing factor to the secretory defect in sec14 cells; second, Sec14p function is coupled to the action of Pik1p, and; third, PtdIns(4)P has an important role in the Golgi-to-plasma membrane stage of secretion.  相似文献   

6.
To investigate several key aspects of phosphatidylinositol transfer protein (PI-TP) function in eukaryotic cells, rat PI-TP was expressed in yeast strains carrying lesions in SEC14, the structural gene for yeast PI-TP (SEC14p), whose activity is essential for Golgi secretory function in vivo. Rat PI-TP expression effected a specific complementation of sec14ts growth and secretory defects. Complementation of sec14 mutations was not absolute as rat PI-TP expression failed to rescue sec14 null mutations. This partial complementation of sec14 lesions by rat PI-TP correlated with inability of the mammalian protein to stably associate with yeast Golgi membranes and was not a result of rat PI-TP stabilizing the endogenous sec14ts gene product. These collective data demonstrate that while the in vitro PI-TP activity of SEC14p clearly reflects some functional in vivo property of SEC14p, the PI-TP activity is not the sole essential activity of SEC14p. Those data further identify an efficient Golgi targeting capability as a likely essential feature of SEC14p function in vivo. Finally, the data suggest that stable association of SEC14p with yeast Golgi membranes is not a simple function of its lipid-binding properties, indicate that the amino-terminal 129 SEC14p residues are sufficient to direct a catalytically inactive form of rat PI-TP to the Golgi and provide the first evidence to indicate that a mammalian PI-TP can stimulate Golgi secretory function in vivo.  相似文献   

7.
It has been shown previously that defects in the essential GTP-binding protein, Ypt1p, lead to a block in protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in the yeast Saccharomyces cerevisiae. Here we report that four newly discovered suppressors of YPT1 deletion (SLY1-20, SLY2, SLY12, and SLY41) to a varying degree restore ER-to-Golgi transport defects in cells lacking Ypt1p. These suppressors also partially complement the sec21-1 and sec22-3 mutants which lead to a defect early in the secretory pathway. Sly1p-depleted cells, as well as a conditional lethal sly2 null mutant at nonpermissive temperatures, accumulate ER membranes and core-glycosylated invertase and carboxypeptidase Y. The sly2 null mutant under restrictive conditions (37 degrees C) can be rescued by the multicopy suppressor SLY12 and the single-copy suppressor SLY1-20, indicating that these three SLY genes functionally interact. Sly2p is shown to be an integral membrane protein.  相似文献   

8.
Abplp is a yeast cortical actin-binding protein that contains an SH3 domain similar to those found in signal transduction proteins that function at the membrane/cytoskeleton interface. Although no detectable phenotypes are associated with a disruption allele of ABP1, mutations that create a requirement for this protein have now been isolated in the previously identified gene SAC6 and in two new genes, SLA1 and SLA2. The SAC6 gene encodes yeast fimbrin, an actin filament-bundling protein. Null mutations in SLA1 and SLA2 cause temperature-sensitive growth defects. Sla1p contains three SH3 domains and is essential for the proper formation of the cortical actin cytoskeleton. The COOH terminus of Sla2p contains a 200 amino acid region with homology to the COOH terminus of talin, a membrane cytoskeletal protein which is a component of fibroblast focal adhesions. Sla2p is required for cellular morphogenesis and polarization of the cortical cytoskeleton. In addition, synthetic-lethal interactions were observed for double- mutants containing null alleles of SLA2 and SAC6. In total, the mutant phenotypes, sequences, and genetic interactions indicate that we have identified novel proteins that cooperate to control the dynamic cytoskeletal rearrangements that are required for the development of cell polarity in budding yeast.  相似文献   

9.
Disruption of the yeast tropomyosin gene TPM1 results in the apparent loss of actin cables from the cytoskeleton (Liu, H., and A. Bretscher. 1989. Cell. 57:233-242). Here we show that TPM1 disrupted cells grow slowly, show heterogeneity in cell size, have delocalized deposition of chitin, and mate poorly because of defects in both shmooing and cell fusion. The transit time of alpha-factor induced a-agglutinin secretion to the cell surface is longer than in isogenic wild-type strains, and some of the protein is mislocalized. Many of the TPM1-deleted cells contain abundant vesicles, similar in morphology to late secretory vesicles, but without an abnormal accumulation of intermediates in the delivery of either carboxypeptidase Y to the vacuole or invertase to the cell surface. Combinations of the TPM1 disruption with sec13 or sec18 mutations, which affect early steps in the secretory pathway, block vesicle accumulation, while combinations with sec1, sec4 or sec6 mutations, which affect a late step in the secretory pathway, have no effect on the vesicle accumulation. The phenotype of the TPM1 disrupted cells is very similar to that of a conditional mutation in the MYO2 gene, which encodes a myosin-like protein (Johnston, G. C., J. A. Prendergast, and R. A. Singer. 1991. J. Cell Biol. 113:539-551). The myo2-66 conditional mutation shows synthetic lethality with the TPM1 disruption, indicating that the MYO2 and TPM1 gene products may be involved in the same, or parallel function. We conclude that tropomyosin, and by inference actin cables, may facilitate directed vesicular transport of components to the correct location on the cell surface.  相似文献   

10.
Bud growth in yeast is guided by myosin-driven delivery of secretory vesicles from the mother cell to the bud. We find transport occurs along two sets of actin cables assembled by two formin isoforms. The Bnr1p formin assembles cables that radiate from the bud neck into the mother, providing a stable mother-bud axis. These cables also depend on septins at the neck and are required for efficient transport from the mother to the bud. The Bni1p formin assembles cables that line the bud cortex and target vesicles to varying locations in the bud. Loss of these cables results in morphological defects as vesicles accumulate at the neck. Assembly of these cables depends on continued polarized secretion, suggesting vesicular transport provides a positive feedback signal for Bni1p activation, possibly by rho-proteins. By coupling different formin isoforms to unique cortical landmarks, yeast uses common cytoskeletal elements to maintain stable and dynamic axes in the same cell.  相似文献   

11.
Two new temperature-sensitive alleles of SEC3, 1 of 10 late-acting SEC genes required for targeting or fusion of post-Golgi secretory vesicles to the plasma membrane in Saccharomyces cerevisiae, were isolated in a screen for temperature-sensitive secretory mutants that are synthetically lethal with sec4-8. The new sec3 alleles affect early as well as late stages of secretion. Cloning and sequencing of the SEC3 gene revealed that it is identical to profilin synthetic lethal 1 (PSL1). The SEC3 gene is not essential because cells depleted of Sec3p are viable although slow growing and temperature sensitive. All of the sec3 alleles genetically interact with a profilin mutation, pfy1-111. The SEC3 gene in high copy suppresses pfy1-111 and sec5-24 and causes synthetic growth defects with ypt1, sec8-9, sec10-2, and sec15-1. Actin structure is only perturbed in conditions of chronic loss of Sec3p function, implying that Sec3p does not directly regulate actin. All alleles of sec3 cause bud site selection defects in homozygous diploids, as do sec4-8 and sec9-4. This suggests that SEC gene products are involved in determining the bud site and is consistent with a role for Sec3p in determining the correct site of exocytosis.  相似文献   

12.
Both the delivery of secretory vesicles and asymmetric distribution of mRNA to the bud are dependent upon the actin cytoskeleton in yeast. Here we examined whether components of the exocytic apparatus play a role in mRNA transport. By screening secretion mutants in situ and in vivo, we found that all had an altered pattern of ASH1 mRNA localization. These included alleles of CDC42 and RHO3 (cdc42-6 and rho3-V51) thought to regulate specifically the fusion of secretory vesicles but were found to affect strongly the cytoskeleton as well. Most interestingly, mutations in late secretion-related genes not directly involved in actin regulation also showed substantial alterations in ASH1 mRNA distribution. These included mutations in genes encoding components of the exocyst (SEC10 and SEC15), SNARE regulatory proteins (SEC1, SEC4, and SRO7), SNAREs (SEC9 and SSO1/2), and proteins involved in Golgi export (PIK1 and YPT31/32). Importantly, prominent defects in the actin cytoskeleton were observed in all of these strains, thus implicating a known causal relationship between the deregulation of actin and the inhibition of mRNA transport. Our novel observations suggest that vesicular transport regulates the actin cytoskeleton in yeast (and not just vice versa) leading to subsequent defects in mRNA transport and localization.  相似文献   

13.
In yeast, assembly of exocytic soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor (SNARE) complexes between the secretory vesicle SNARE Sncp and the plasma membrane SNAREs Ssop and Sec9p occurs at a late stage of the exocytic reaction. Mutations that block either secretory vesicle delivery or tethering prevent SNARE complex assembly and the localization of Sec1p, a SNARE complex binding protein, to sites of secretion. By contrast, wild-type levels of SNARE complexes persist in the sec1-1 mutant after a secretory block is imposed, suggesting a role for Sec1p after SNARE complex assembly. In the sec18-1 mutant, cis-SNARE complexes containing surface-accessible Sncp accumulate in the plasma membrane. Thus, one function of Sec18p is to disassemble SNARE complexes on the postfusion membrane.  相似文献   

14.
SEC66 encodes the 31.5-kDa glycoprotein of the Sec63p complex, an integral endoplasmic reticulum membrane protein complex required for translocation of presecretory proteins in Saccharomyces cerevisiae. DNA sequence analysis of SEC66 predicts a 23-kDa protein with no obvious NH2-terminal signal sequence but with one domain of sufficient length and hydrophobicity to span a lipid bilayer. Antibodies directed against a recombinant form of Sec66p were used to confirm the membrane location of Sec66p and that Sec66p is a glycoprotein of 31.5 kDa. A null mutation in SEC66 renders yeast cells temperature sensitive for growth. sec66 cells accumulate some secretory precursors at a permissive temperature and a variety of precursors at the restrictive temperature. sec66 cells show defects in Sec63p complex formation. Because sec66 cells affect the translocation of some, but not all secretory precursor polypeptides, the role of Sec66p may be to interact with the signal peptide of presecretory proteins.  相似文献   

15.
A mutant yeast actin (GG) has decreased hydrophobicity in a subdomain 3/4 hydrophobic plug believed to be involved in a hydrophobic cross-strand "plug-pocket" interaction necessary for actin filament stability. This actin will not polymerize in vitro but is compatible with cell viability. We have assessed the ability of Sac6p, the yeast homologue of the actin filament stabilizing and bundling protein fimbrin, to restore polymerization in vitro and to facilitate GG-actin function in vivo. Sac6p rescues GG-actin polymerization at 25 degrees C but not at 4 degrees C. The actin polymerizes into bundles at room temperature with a fimbrin:actin molar ratio of 1:4. At this ratio, every actin monomer contacts a Sac6p actin binding domain. Following cold-induced depolymerization, actin/Sac6p mixtures repolymerize beginning at 15 degrees C instead of the 25 degrees C required for de novo assembly, because of the presence of residual actin-Sac6p nuclei. Generation of haploid Deltasac6/GG-actin cells from either diploid or haploid cells was unsuccessful. The facile isolation of cells with either mutation alone indicates a synthetic lethal relationship between this actin allele and the SAC6 gene. Sac6p may allow GG-actin function in vivo by stabilizing the actin in bundles thereby helping maintain sufficient levels of an otherwise destabilized actin monomer within the cell.  相似文献   

16.
Yeast phosphatidylinositol-transfer protein (Sec14p) is essential for Golgi secretory function and cell viability. This requirement of Sec14p is relieved by genetic inactivation of the cytidine diphosphate-choline pathway for phosphatidycholine (PtdCho) biosynthesis. Standard phenotypic analyses indicate that inactivation of the phosphatidylethanolamine (PtdEtn) pathway for PtdCho biosynthesis, however, does not rescue the growth and secretory defects associated with Sec14p deficiency. We now report inhibition of choline uptake from the media reveals an efficient "bypass Sec14p" phenotype associated with PtdEtn-methylation pathway defects. We further show that the bypass Sec14p phenotype associated with PtdEtn-methylation pathway defects resembles other bypass Sec14p mutations in its dependence on phospholipase D activity. Finally, we find that increased dosage of enzymes that catalyze phospholipase D-independent turnover of PtdCho, via mechanisms that do not result in a direct production of phosphatidic acid or diacylglycerol, effect a partial rescue of sec14-1(ts)-associated growth defects. Taken together, these data support the idea that PtdCho is intrinsically toxic to yeast Golgi secretory function.  相似文献   

17.
Ark1p (actin regulating kinase 1) was identified as a yeast protein that binds to Sla2p, an evolutionarily conserved cortical actin cytoskeleton protein. Ark1p and a second yeast protein, Prk1p, contain NH2-terminal kinase domains that are 70% identical. Together with six other putative kinases from a number of organisms, these proteins define a new protein kinase family that we have named the Ark family. Lack of both Ark1p and Prk1p resulted in the formation of large cytoplasmic actin clumps and severe defects in cell growth. These defects were rescued by wild-type, but not by kinase-dead versions of the proteins. Elevated levels of either Ark1p or Prk1p caused a number of actin and cell morphological defects that were not observed when the kinase-dead versions were overexpressed instead. Ark1p and Prk1p were shown to localize to actin cortical patches, making these two kinases the first signaling proteins demonstrated to be patch components. These results suggest that Ark1p and Prk1p may be downstream effectors of signaling pathways that control actin patch organization and function. Furthermore, results of double-mutant analyses suggest that Ark1p and Prk1p function in overlapping but distinct pathways that regulate the cortical actin cytoskeleton.  相似文献   

18.
The branching of exocytic transport routes in both yeast and mammalian cells has complicated studies of the late secretory pathway, and the mechanisms involved in exocytic cargo sorting and exit from the Golgi and endosomes are not well understood. Because cargo can be sorted away from a blocked route and secreted by an alternate route, mutants defective in only one route do not exhibit a strong secretory phenotype and are therefore difficult to isolate. In a genetic screen designed to isolate such mutants, we identified a novel conserved protein, Avl9p, the absence of which conferred lethality in a vps1Delta apl2Delta strain background (lacking a dynamin and an adaptor-protein complex 1 subunit). Depletion of Avl9p in this strain resulted in secretory defects as well as accumulation of Golgi-like membranes. The triple mutant also had a depolarized actin cytoskeleton and defects in polarized secretion. Overexpression of Avl9p in wild-type cells resulted in vesicle accumulation and a post-Golgi defect in secretion. Phylogenetic analysis indicated evolutionary relationships between Avl9p and regulators of membrane traffic and actin function.  相似文献   

19.
Vesicle-mediated traffic between compartments of the yeast secretory pathway involves recruitment of multiple cytosolic proteins for budding, targeting, and membrane fusion events. The SEC7 gene product (Sec7p) is a constituent of coat structures on transport vesicles en route to the Golgi complex in the yeast Saccharomyces cerevisiae. To identify mammalian homologs of Sec7p and its interacting proteins, we used a genetic selection strategy in which a human HepG2 cDNA library was transformed into conditional-lethal yeast sec7 mutants. We isolated several clones capable of rescuing sec7 mutant growth at the restrictive temperature. The cDNA encoding the most effective suppressor was identified as human ADP ribosylation factor 4 (hARF4), a member of the GTPase family proposed to regulate recruitment of vesicle coat proteins in mammalian cells. Having identified a Sec7p-interacting protein rather than the mammalian Sec7p homolog, we provide evidence that hARF4 suppressed the sec7 mutation by restoring secretory pathway function. Shifting sec7 strains to the restrictive temperature results in the disappearance of the mutant Sec7p cytosolic pool without apparent changes in the membrane-associated fraction. The introduction of hARF4 to the cells maintained the balance between cytosolic and membrane-associated Sec7p pools. These results suggest a requirement for Sec7p cycling on and off of the membranes for cell growth and vesicular traffic. In addition, overexpression of the yeast GTPase-encoding genes ARF1 and ARF2, but not that of YPT1, suppressed the sec7 mutant growth phenotype in an allele-specific manner. This allele specificity indicates that individual ARFs are recruited to perform two different Sec7p-related functions in vesicle coat dynamics.  相似文献   

20.
The Rho family of GTPases is present in all eukaryotic cells from yeast to mammals; they are regulators in signaling pathways that control actin organization and morphogenetic processes. In yeast, Rho GTPases are implicated in cell polarity processes and cell wall biosynthesis. It is known that Rho1 and Rho2 are key proteins in the construction of the cell wall, an essential structure that in Schizosaccharomyces pombe is composed of beta-glucan, alpha-glucan, and mannoproteins. Rho1 regulates the synthesis of 1,3-beta-D-glucan by activation of the 1,3-beta-D-glucan synthase, and Rho2 regulates the synthesis of alpha-glucan by the 1,3-alpha-D-glucan synthase Mok1. Here we describe the characterization of another Rho GTPase in fission yeast, Rho4. rho4Delta cells are viable but display cell separation defects at high temperature. In agreement with this observation, Rho4 localizes to the septum. Overexpression of rho4(+) causes lysis and morphological defects. Several lines of evidence indicate that both rho4(+) deletion or rho4(+) overexpression result in a defective cell wall, suggesting an additional role for Rho4 in cell wall integrity. Rho4Delta cells also accumulate secretory vesicles around the septum and are defective in actin polarization. We propose that Rho4 could be involved in the regulation of the septum degradation during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号