首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dendrite of the sensory neuron is surrounded by support cells and is composed of two specialized compartments: the inner segment and the sensory cilium. How the sensory dendrite is formed and maintained is not well understood. Hook-related proteins (HkRP) like Girdin, DAPLE, and Gipie are actin-binding proteins, implicated in actin organization and in cell motility. Here, we show that the Drosophila melanogaster single member of the Hook-related protein family, Girdin, is essential for sensory dendrite formation and function. Mutations in girdin were identified during a screen for fly mutants with no mechanosensory function. Physiological, morphological, and ultrastructural studies of girdin mutant flies indicate that the mechanosensory neurons innervating external sensory organs (bristles) initially form a ciliated dendrite that degenerates shortly after, followed by the clustering of their cell bodies. Importantly, we observed that Girdin is expressed transiently during dendrite morphogenesis in three previously unidentified actin-based structures surrounding the inner segment tip and the sensory cilium. These actin structures are largely missing in girdin mutant. Defects in cilia are observed in other sensory organs such as those mediating olfaction and taste, suggesting that Girdin has a general role in forming sensory dendrites in Drosophila. These suggest that Girdin functions temporarily within the sensory organ and that this function is essential for the formation of the sensory dendrites via actin structures.  相似文献   

3.
4.
5.
Data obtained by cloning of a mouse cDNA ( TAZ83 ) are presented. Its corresponding gene is expressed in meiotic and haploid testicular germ cells. The gene encodes a putative, cysteine-rich transmembrane protein with a deduced molecular weight of 90 kilodaltons and an isoelectric point of 5.4. Cysteine patterns within the predicted amino acid sequence of the TAZ83 gene product ( cyritestin , cysteine-rich, testicular) are highly conserved when compared to various snake toxins of the disintegrin metalloproteinase type. The cysteine pattern conservation between cyritestin and a guinea pig sperm-egg fusion protein suggests that TAZ83 codes for a mouse protein with comparable properties or function.  相似文献   

6.
Nicastrin and its relative Nicalin (Nicastrin-like protein) are both members of larger protein complexes, namely γ-secretase and the Nicalin-NOMO (Nodal modulator) complex. The γ-secretase complex, which contains Presenilin, APH-1, and PEN-2 in addition to Nicastrin, catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the β-amyloid precursor protein and Notch. Nicalin and its binding partner NOMO form a complex that was shown to modulate Nodal signaling in developing zebrafish embryos. Because its experimentally determined native size (200–220 kDa) could not be satisfyingly explained by the molecular masses of Nicalin (60 kDa) and NOMO (130 kDa), we searched in affinity-purified complex preparations for additional components in the low molecular mass range. A ∼22-kDa protein was isolated and identified by mass spectrometry as transmembrane protein 147 (TMEM147), a novel, highly conserved membrane protein with a putative topology similar to APH-1. Like Nicalin and NOMO, it localizes to the endoplasmic reticulum and is expressed during early zebrafish development. Overexpression and knockdown experiments in cultured cells demonstrate a close relationship between the three proteins and suggest that they are components of the same complex. We present evidence that, similar to γ-secretase, its assembly is hierarchical starting with the formation of a Nicalin-NOMO intermediate. Nicalin appears to represent the limiting factor regulating the assembly rate by stabilizing the other two components. We conclude that TMEM147 is a novel core component of the Nicalin-NOMO complex, further emphasizing its similarity with γ-secretase.  相似文献   

7.
Lck-interacting transmembrane adaptor 1 (LIME) has been previously identified as a raft-associated transmembrane protein expressed predominantly in T and B lymphocytes. Although LIME is shown to transduce the immunoreceptor signaling and immunological synapse formation via its tyrosine phosphorylation by Lck, a Src-family kinase, the in vivo function of LIME has remained elusive in the previous studies. Here we report that LIME is preferentially expressed in effector T cells and mediates chemokine-mediated T cell migration. Interestingly, in LIME-/- mice, while T cell receptor stimulation-dependent proliferation, differentiation to effector T cells, cytotoxic T lymphocyte (CTL) function and regulatory T lymphocyte (Treg) function were normal, only T cell-mediated inflammatory response was significantly defective. The reduced inflammation was accompanied by the impaired infiltration of leukocytes and T cells to the inflammatory sites of LIME-/- mice. More specifically, the absence of LIME in effector T cells resulted in the reduced migration and defective morphological polarization in response to inflammatory chemokines such as CCL5 and CXCL10. Consistently, LIME-/- effector T cells were found to be defective in chemokine-mediated activation of Rac1 and Rap1, and dysregulated phosphorylation of Pyk2 and Cas. Taken together, the present findings show that LIME is a critical regulator of inflammatory chemokine-mediated signaling and the subsequent migration of effector T cells to inflammatory sites.  相似文献   

8.
The unkempt gene of Drosophila encodes a set of embryonic RNAs, which are abundant during early stages of embryogenesis and are present ubiquitously in most somatic tissues from the syncytial embryo through stage 15 of embryogenesis. Expression of unkempt RNAs becomes restricted predominantly to the central nervous system in stages 16 and early 17. Analysis of cDNAs from this locus reveals the presence of five Cys3His fingers in the protein product. Isolation and analysis of mutations affecting the unkempt gene, including complete deletions of this gene, indicate that there is no zygotic requirement for unkempt during embryogenesis, presumably due to the contribution of maternally supplied RNA, although the gene is essential during post-embryonic development.  相似文献   

9.
The neuronal ceroid lipofuscinoses (NCLs) are a group of autosomal recessive neurodegenerative diseases characterized by the accumulation of autofluorescent lipopigment in various tissues and by progressive cell death in the brain and retina. The gene for variant late-infantile NCL (vLINCL), CLN6, was previously mapped to chromosome 15q21-23 and is predicted to be orthologous to the genes underlying NCL in nclf mice and in South Hampshire and Merino sheep. The gene underlying this disease has been identified with six different mutations found in affected patients and with a 1-bp insertion in the orthologous Cln6 gene in the nclf mouse. CLN6 encodes a novel 311-amino acid protein with seven predicted transmembrane domains, is conserved across vertebrates and has no homologies with proteins of known function. One vLINCL mutation, affecting a conserved amino acid residue within the predicted third hydrophilic loop of the protein, has been identified, suggesting that this domain may play an important functional role.  相似文献   

10.
11.
Chromosome rearrangements which place euchromatic genes adjacent to a heterochromatic breakpoint frequently result in gene repression (position-effect variegation). This repression is thought to reflect the spreading of a heterochromatic structure into neighboring euchromatin. Two allelic dominant suppressors of position-effect variegation were found to contain mutations within the gene encoding the heterochromatin-specific chromosomal protein HP-1. The site of mutation for each allele is given: one converts Lys169 into a nonsense (ochre) codon, while the other is a frameshift after Ser10. In flies heterozygous for one of the mutant alleles (Su(var)2-504), a truncated HP-1 protein was detectable by Western blot analysis. An HP-1 minigene, consisting of HP-1 cDNA under the control of an Hsp70 heat-inducible promoter, was transduced into flies by P element-mediated germ line transformation. Heat-shock driven expression of this minigene results in elevated HP-1 protein level and enhancement of position-effect variegation. Levels of variegating gene expression thus appear to depend upon the level of expression of a heterochromatin-specific protein. The implications of these observations for mechanism of heterochromatic position effects and heterochromatin function are discussed.  相似文献   

12.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) comprise a large gene family with sterol/lipid transport and regulatory activities. ORP4 (OSBP2) is a closely related paralogue of OSBP, but its function is unknown. Here we show that ORP4 binds similar sterol and lipid ligands as OSBP and other ORPs but is uniquely required for the proliferation and survival of cultured cells. Recombinant ORP4L and a variant without a pleckstrin homology (PH) domain (ORP4S) bind 25-hydroxycholesterol and extract and transfer cholesterol between liposomes. Two conserved histidine residues in the OSBP homology domain ORP4 are essential for binding phosphatidylinositol 4-phosphate but not sterols. The PH domain of ORP4L also binds phosphatidylinositol 4-phosphate in the Golgi apparatus. However, in the context of ORP4L, the PH domain is required for normal organization of the vimentin network. Unlike OSBP, RNAi silencing of all ORP4 variants (including a partial PH domain truncation termed ORP4M) in HEK293 and HeLa cells resulted in growth arrest but not cell death. ORP4 silencing in non-transformed intestinal epithelial cells (IEC)-18 caused apoptosis characterized by caspase 3 and poly(ADP-ribose) polymerase processing, DNA cleavage, and JNK phosphorylation. IEC-18 transformed with oncogenic H-Ras have increased expression of ORP4L and ORP4S proteins and are resistant to the growth-inhibitory effects of ORP4 silencing. Results suggest that ORP4 promotes the survival of rapidly proliferating cells.  相似文献   

13.
Members of the SNARE-family of proteins are known to be key regulators of the membrane-membrane fusion events required for intracellular membrane traffic. The ubiquitously expressed SNARE protein SNAP-23 regulates a wide variety of exocytosis events and is essential for mouse development. Germline deletion of SNAP-23 results in early embryonic lethality in mice, and for this reason we now describe mice and cell lines in which SNAP-23 can be conditionally-deleted using Cre-lox technology. Deletion of SNAP-23 in CD19-Cre expressing mice prevents B lymphocyte development and deletion of SNAP-23 using a variety of T lymphocyte-specific Cre mice prevents T lymphocyte development. Acute depletion of SNAP-23 in mouse fibroblasts leads to rapid apoptotic cell death. These data highlight the importance of SNAP-23 for cell survival and describe a mouse in which specific cell types can be eliminated by expression of tissue-specific Cre-recombinase.  相似文献   

14.
Mutations in human (Homo sapiens) ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) result in the complex metabolic disease ethylmalonic encephalopathy, which is characterized in part by brain lesions, lactic acidemia, excretion of ethylmalonic acid, and ultimately death. ETHE1-like genes are found in a wide range of organisms; however, the biochemical and physiological role(s) of ETHE1 have not been examined outside the context of ethylmalonic encephalopathy. In this study we characterized Arabidopsis (Arabidopsis thaliana) ETHE1 and determined the effect of an ETHE1 loss-of-function mutation to investigate the role(s) of ETHE1 in plants. Arabidopsis ETHE1 is localized in the mitochondrion and exhibits sulfur dioxygenase activity. Seeds homozygous for a DNA insertion in ETHE1 exhibit alterations in endosperm development that are accompanied by a delay in embryo development followed by embryo arrest by early heart stage. Strong ETHE1 labeling was observed in the peripheral and chalazal endosperm of wild-type seeds prior to cellularization. Therefore, ETHE1 appears to play an essential role in regulating sulfide levels in seeds.  相似文献   

15.
The CD1e protein participates in the presentation of lipid antigens in dendritic cells. Its transmembrane precursor is transported to lysosomes where it is cleaved into an active soluble form. In the presence of bafilomycin, which inhibits vacuolar ATPase and consequently the acidification of endosomal compartments, CD1e associates with a 27 kD protein. In this work, we identified this molecular partner as LAPTM5. The latter protein and CD1e colocalize in trans-Golgi and late endosomal compartments. The quantity of LAPTM5/CD1e complexes increases when the cells are treated with bafilomycin, probably due to the protection of LAPTM5 from lysosomal proteases. Moreover, we could demonstrate that LAPTM5/CD1e association occurs under physiological conditions. Although LAPTM5 was previously shown to act as a platform recruiting ubiquitin ligases and facilitating the transport of receptors to lysosomes, we found no evidence that LATPM5 controls either CD1e ubiquitination or the generation of soluble lysosomal CD1e proteins. Notwithstanding these last observations, the interaction of LAPTM5 with CD1e and their colocalization in antigen processing compartments both suggest that LAPTM5 might influence the role of CD1e in the presentation of lipid antigens.  相似文献   

16.
Mgm1, the yeast ortholog of mammalian OPA1, is a key component in mitochondrial membrane fusion and is required for maintaining mitochondrial dynamics and morphology. We showed recently that the purified short isoform of Mgm1 (s-Mgm1) possesses GTPase activity, self-assembles into low order oligomers, and interacts specifically with negatively charged phospholipids (Meglei, G., and McQuibban, G. A. (2009) Biochemistry 48, 1774–1784). Here, we demonstrate that s-Mgm1 binds to a mixture of phospholipids characteristic of the mitochondrial inner membrane. Binding to physiologically representative lipids results in ∼50-fold stimulation of s-Mgm1 GTPase activity. s-Mgm1 point mutants that are defective in oligomerization and lipid binding do not exhibit such stimulation and do not function in vivo. Electron microscopy and lipid turbidity assays demonstrate that s-Mgm1 promotes liposome interaction. Furthermore, s-Mgm1 assembles onto liposomes as oligomeric rings with 3-fold symmetry. The projection map of negatively stained s-Mgm1 shows six monomers, consistent with two stacked trimers. Taken together, our data identify a lipid-binding domain in Mgm1, and the structural analysis suggests a model of how Mgm1 promotes the fusion of opposing mitochondrial inner membranes.Mitochondrial dynamics have been implicated in neurodegenerative diseases such as dominant optic atrophy and Parkinson disease (1, 2). Mitochondrial morphology is regulated by balanced membrane fusion and fission reactions that are orchestrated by members of the highly conserved dynamin-related protein family (3). Dynamin-related proteins are large GTPases that can self-assemble and promote membrane remodeling (4, 5). We have shown previously that the dynamin-related protein Mgm1 has GTPase activity, self-assembles into low order oligomers, and binds to negatively charged phospholipids (6). Mgm1 exists as two isoforms in the mitochondria; l-Mgm12 is anchored to the IM via a transmembrane domain, and s-Mgm1 is peripherally associated with the IM and also found in the intermembrane space. s-Mgm1 results from the regulated cleavage by the mitochondrial rhomboid protease (7, 8). It was shown recently that both isoforms are essential but have distinct roles in mitochondrial membrane fusion whereby only s-Mgm1 requires its GTPase activity (9). It is proposed that l-Mgm1 serves as a receptor for s-Mgm1 to mediate fusion of opposing membranes upon GTP hydrolysis. Here, we provide molecular data indicating that lipid binding of s-Mgm1 is required for proper membrane fusion. Furthermore, structural analysis of s-Mgm1 assembled onto liposomes suggests a model whereby stacked trimers of s-Mgm1 on opposing membranes would facilitate fusion.  相似文献   

17.
Homozygous mutations in the abnormal spindle-like, microcephaly-associatedASPM gene are the leading cause of autosomal recessive primary microcephaly. ASPM isthe putative human ortholog of the Drosophila melanogaster abnormal spindles gene(asp), which is essential for mitotic spindle function. Here, we report thatdownregulation of endogenous ASPM by siRNA decreases protein levels of endogenousBRCA1. ASPM localizes to the centrosome in interphase and to the spindle poles fromprophase through telophase. These findings indicate that ASPM may be involved inmitotic spindle function, possibly, through regulation of BRCA1.  相似文献   

18.
Tegument is a unique structure of herpesvirus, which surrounds the capsid and interacts with the envelope. Morphogenesis of gammaherpesvirus is poorly understood due to lack of efficient lytic replication for Epstein-Barr virus and Kaposi''s sarcoma-associated herpesvirus/human herpesvirus 8, which are etiologically associated with several types of human malignancies. Murine gammaherpesvirus 68 (MHV-68) is genetically related to the human gammaherpesviruses and presents an excellent model for studying de novo lytic replication of gammaherpesviruses. MHV-68 open reading frame 33 (ORF33) is conserved among Alpha-, Beta-, and Gammaherpesvirinae subfamilies. However, the specific role of ORF33 in gammaherpesvirus replication has not yet been characterized. We describe here that ORF33 is a true late gene and encodes a tegument protein. By constructing an ORF33-null MHV-68 mutant, we demonstrated that ORF33 is not required for viral DNA replication, early and late gene expression, viral DNA packaging or capsid assembly but is required for virion morphogenesis and egress. Although the ORF33-null virus was deficient in release of infectious virions, partially tegumented capsids produced by the ORF33-null mutant accumulated in the cytoplasm, containing conserved capsid proteins, ORF52 tegument protein, but virtually no ORF45 tegument protein and the 65-kDa glycoprotein B. Finally, we found that the defect of ORF33-null MHV-68 could be rescued by providing ORF33 in trans or in an ORF33-null revertant virus. Taken together, our results indicate that ORF33 is a tegument protein required for viral lytic replication and functions in virion morphogenesis and egress.Gammaherpesviruses are associated with tumorigenesis. Like other herpesviruses, they are characterized as having two distinct stages in their life cycle: lytic replication and latency (15, 16, 18, 21, 54). Latency provides the viruses with advantages to escape host immune surveillance and to establish lifelong persistent infection and contributes to transformation and development of malignancies. However, it is through lytic replication that viruses propagate and transmit among hosts to maintain viral reservoirs. Both viral latency and lytic replication play important roles in tumorigenesis. The gammaherpesvirus subfamily includes Epstein-Barr virus (EBV), Kaposi''s sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 and murine gammaherpesvirus 68 (MHV-68), among others. EBV is associated with Burkitt''s lymphoma, nasopharyngeal carcinoma, Hodgkin''s disease, and lymphoproliferative diseases in immunodeficient patients (28). KSHV is etiologically linked with Kaposi''s sarcoma, primary effusion lymphoma, and multicentric Castleman''s disease (11-13, 22, 52). Neither in vivo nor in vitro studies of EBV and KSHV are convenient due to their propensity to establish latency in cell culture and their limited host ranges.MHV-68 is genetically related to these two human gammaherpesviruses, especially to KSHV, based on the alignment of their genomic sequences and other biological properties (55). As a natural pathogen of wild rodents, MHV-68 also infects laboratory mice (6, 40, 46) and replicates to a high titer in a variety of fibroblast and epithelial cell lines. These advantages make MHV-68 an excellent model for studying the lytic replication of gammaherpesviruses in vitro and certain aspects of virus-host interactions in vivo. In addition, the MHV-68 genome has been cloned as a bacterial artificial chromosome (BAC) that can propagate in Escherichia coli (1, 2, 36, 51), making it convenient to study the function of each open reading frame (ORF) by genetic methods. Exploring the functions of MHV-68 ORFs will likely shed light on the functions of their homologues in human gammaherpesviruses.Gammaherpesviral particles have a characteristic multilayered architecture. An infectious virion contains a double-stranded DNA genome, an icosahedral capsid shell, a thick, proteinaceous tegument compartment, and a lipid bilayer envelope spiked with glycoproteins (14, 30, 47, 49). As a unique structure of herpesviruses, the tegument plays important roles in multiple aspects of the viral life cycle, including virion assembly and egress (38, 48, 53), translocation of nucleocapsids into the nucleus, transactivation of viral immediate-early genes, and modulation of host cell gene expression, innate immunity, and signal transduction (9, 10, 23, 60). Some components of MHV-68 tegument have been identified by a mass spectrometric study (8), and the functions of some tegument proteins have been revealed, such as ORF45, ORF52, and ORF75c (7, 24, 29).MHV-68 ORF33 is conserved among Alpha-, Beta-, and Gammaherpesvirinae subfamilies. Its homologues include human herpes simplex virus type 1 (HSV-1) UL16, human herpes simplex virus type 2 (HSV-2) UL16, human cytomegalovirus (HCMV) UL94, EBV BGLF2, KSHV ORF33, and rhesus monkey rhadinovirus (RRV) ORF33. HSV-1 UL16 has been identified as a tegument protein and may function in viral DNA packaging, virion assembly, budding, and egress (5, 32, 35, 41, 44). HCMV UL94 is a virion associated protein and might function in virion assembly and budding (31, 57). EBV BGLF2, KSHV ORF33, and RRV ORF33 are also virion-associated proteins, but their functions are not clear (26, 43, 59). The mass spectrometric study of MHV-68 did not identify ORF33 as a virion component (8), although ORF33 is found to be essential for viral lytic replication by transposon mutagenesis of the MHV-68 genome cloned as a BAC (51). However, insertion of the 1.2-kbp Mu transposon in that study may influence the expression of ORFs approximate to ORF33. Consequently, the role ORF33 plays in viral replication needs to be confirmed, preferably through site-directed mutagenesis. Whether ORF33 is a tegument protein and the exact viral replication stage in which it functions also need to be investigated.We determined that MHV-68 ORF33 encodes a tegument protein and is expressed with true late kinetics. To explore the function of ORF33 in viral lytic phase, we used site-directed mutagenesis and generated an ORF33-null mutant, taking advantage of the MHV-68 BAC system. We showed that the ORF33-null mutant is capable of viral DNA replication, early and late gene expression, capsid assembly, and DNA packaging, but incapable of virion release. The defect of ORF33-null mutant can be rescued in trans by an ORF33 expression plasmid.  相似文献   

19.
Function of the mammalian translocator protein (TSPO; previously known as the peripheral benzodiazepine receptor) remains unclear because its presumed role in steroidogenesis and mitochondrial permeability transition established using pharmacological methods has been refuted in recent genetic studies. Protoporphyrin IX (PPIX) is considered a conserved endogenous ligand for TSPO. In bacteria, TSPO was identified to regulate tetrapyrrole metabolism and chemical catalysis of PPIX in the presence of light, and in vertebrates, TSPO function has been linked to porphyrin transport and heme biosynthesis. Positive correlation between high TSPO expression in cancer cells and susceptibility to photodynamic therapy based on their increased ability to convert the precursor 5-aminolevulinic acid (ALA) to PPIX appeared to reinforce this mechanism. In this study, we used TSPO knock-out (Tspo−/−) mice, primary cells, and different tumor cell lines to examine the role of TSPO in erythropoiesis, heme levels, PPIX biosynthesis, phototoxic cell death, and mitochondrial bioenergetic homeostasis. In contrast to expectations, our results demonstrate that TSPO deficiency does not adversely affect erythropoiesis, heme biosynthesis, bioconversion of ALA to PPIX, and porphyrin-mediated phototoxic cell death. TSPO expression levels in cancer cells do not correlate with their ability to convert ALA to PPIX. In fibroblasts, we observed that TSPO deficiency decreased the oxygen consumption rate and mitochondrial membrane potential (ΔΨm) indicative of a cellular metabolic shift, without a negative impact on porphyrin biosynthetic capability. Based on these findings, we conclude that mammalian TSPO does not have a critical physiological function related to PPIX and heme biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号