首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Bacillus subtilis genome comprises two paralogous single-stranded DNA binding protein (SSB) genes, ssb and ywpH, which show distinct expression patterns. The main ssb gene is strongly expressed during exponential growth and is coregulated with genes encoding the ribosomal proteins S6 and S18. The gene organization rpsF-ssb-rpsR as observed in B. subtilis is found in many gram-positive as well as some gram-negative bacteria, but not in Escherichia coli. The ssb gene is essential for cell viability, and like other SSBs its expression is elevated during SOS response. In contrast, the paralogous ywpH gene is transcribed from its own promoter at the onset of stationary phase in minimal medium only. Its expression is ComK dependent and its gene product is required for optimal natural transformation.  相似文献   

4.
Elevation of active sigma(E) levels in Escherichia coli by either repressing the expression of rseA encoding an anti-sigma(E) factor or cloning rpoE in a multicopy plasmid, led to a large decrease in the number of dead cells and the accumulation of cellular proteins in the medium in the stationary phase. The numbers of CFU, however, were nearly the same as those of the wild type or cells devoid of the cloned gene. In the wild-type cells, rpoE expression was increased in the stationary phase and a low-level release of intracellular proteins was observed. These results suggest that dead cell lysis in stationary-phase E. coli occurs in a sigma(E)-dependent fashion. We propose there is a novel physiological function of the sigma(E) regulon that may guarantee cell survival in prolonged stationary phase by providing nutrients from dead cells for the next generation.  相似文献   

5.
Nutrient starvation in the yeast Saccharomyces cerevisiae leads to a number of physiological changes that accompany entry into stationary phase. The expression of genes whose products play a role in stress adaptation is regulated in a manner that allows the cell to sense and respond to changing environmental conditions. We have identified a novel yeast gene, YGP1, that displays homology to the sporulation-specific SPS100 gene. The expression of YGP1 is regulated by nutrient availability. The gene is expressed at a basal level during "respiro-fermentative" (logarithmic) growth. When the glucose concentration in the medium falls below 1%, the YGP1 gene is derepressed and the gene product, gp37, is synthesized at levels up to 50-fold above the basal level. The glucose-sensing mechanism is independent of the SNF1 pathway and does not operate when cells are directly shifted to a low glucose concentration. The expression of YGP1 also responds to the depletion of nitrogen and phosphate, indicating a general response to nutrient deprivation. These results suggest that the YGP1 gene product may be involved in cellular adaptations prior to stationary phase and may be a useful marker protein for monitoring early events associated with the stress response.  相似文献   

6.
7.
8.
9.
10.
The lcf1(+) gene, which encodes a long chain fatty acyl-CoA synthetase, is necessary for the maintenance of viability after entry into the stationary phase in Schizosaccharomyces pombe. In this study, we analyzed a paralogous gene, SPBP4H10.11c (named lcf2(+)), and we present evidence that the gene encodes a new fatty acyl-CoA synthetase. The enzyme preferentially recognized myristic acid as a substrate. A Deltalcf2 mutant showed increased viability after entry into the stationary phase in SD medium. A Deltalcf1Deltalcf2 double mutant showed a severe decrease in long-chain fatty acyl-CoA synthetase activity and a rapid loss of viability after entry into the stationary phase. These results suggest that fatty acid utilization and/or metabolism is important to determine viability in the stationary phase.  相似文献   

11.
Zabel MD  Bunch PK  Clark DP 《Microbios》2000,101(399):89-103
The thdF gene of Escherichia coli encodes a 48 kD protein which is involved in the oxidation of derivatives of the sulphur-containing heterocycle thiophene and which appears to be induced during stationary phase. In this work the upstream regulatory region of the thdF gene was isolated by polymerase chain reaction and inserted in front of the lacZ structural gene. Examination of the resulting thdF-lacZ operon fusions showed that expression of the thdF gene increased as E. coli entered the stationary phase. However, the expression of thdF was not dependent on RpoS (KatF), the stationary phase sigma factor. The thdF gene was subject to substantial catabolite repression by glucose and its expression was also greatly decreased in the absence of oxygen. The thdF-lacZ fusions were not significantly affected by elevated temperature or medium of high osmolarity, nor by mutations in thdA, fadR, arcA, arcB, or fnr. Both multicopy, plasmid-borne fusions and single-copy fusions gave similar results in all of the above cases except that the plasmid-borne fusions still showed substantial expression in the absence of oxygen. The heterocyclic compounds thiophene carboxylic acid, furan carboxylic acid and proline increased expression of the thdF gene by 2- to 3-fold, but only during the stationary phase. Tryptophan, indole, and several indole derivatives had no effect.  相似文献   

12.
The resistance to stresses as starvation, the presence of ethanol, sulfite and low pH, is a fundamental prerequisite for starter cultures used to induce malolactic fermentation in wine. In order to evaluate stress resistance of cells undergone starvation, cells viability in laboratory cultures of Oenococcus oeni VP01 strain was monitored during prolonged stationary growth phase. Once entered the stationary phase, strain VP01 showed 99% reduction of cell viability within 4 days. The remaining cells population maintained viability over 70 days and, when plated on agar medium, generated small colonies. The occurrence of this phenomenon was associated to stress resistance, since 10-day-old cells resulted more resistant than 3-day-old cells to ethanol and low pH conditions. No genomic mutations were revealed by pulse-field gel electrophoresis (PFGE) analysis in aged cultures. Total protein analysis by bidimensional electrophoresis highlighted differential protein expression in cultures differentially aged. It was demonstrated that O. oeni starving cultures at the stationary phase are constituted by dynamic cell populations. These results offer interesting perspective for a better understanding of cells behavior when inoculated in wine.  相似文献   

13.
Abstract Micrococcus luteus starved for 2–7 months in spent medium following growth to stationary phase in batch culture exhibited a culturability (as estimated by direct plating on nutrient agar plates) of < 0.001%. However, following a lag, some 70% of the cells could be lysed upon inoculation into and cultivation in fresh lactate minimal medium containing penicillin, showing the capability of a significant portion of the cells at least to enlarge (and thus potentially to resuscitate). When the viable cell count was estimated using the most probable number method, by incubation of high dilutions of starved cells in liquid growth media, the number of culturable or resuscitable cells was very low, and little different from the viable cell count as assessed by plating on solid media. However, the apparent viability of these populations evidenced with the most probable number method was 1000–100 000-fold greater when samples were diluted into liquid media containing supernatants taken from the stationary phase of batch cultures of the organism, suggesting that viable cells can produce a factor which stimulates the resuscitation of dormant cells. Both approaches show, under conditions in which the growth of a limited number of viable cells during resuscitation is excluded, that a significant portion of the apparently non-viable cell population in an extended stationary phase is dormant, and not dead.  相似文献   

14.
15.
The rpoS gene encodes the sigma factor which was identified in several gram-negative bacteria as a central regulator during stationary phase. rpoS gene regulation is known to respond to cell density, showing higher expression in stationary phase. For Pseudomonas aeruginosa, it has been demonstrated that the cell-density-dependent regulation response known as quorum sensing interacts with this regulatory response. Using the rpoS promoter of P. putida, we identified a genomic Tn5 insertion mutant of P. putida which showed a 90% decrease in rpoS promoter activity, resulting in less RpoS being present in a cell at stationary phase. Molecular analysis revealed that this mutant carried a Tn5 insertion in a gene, designated psrA (Pseudomonas sigma regulator), which codes for a protein (PsrA) of 26.3 kDa. PsrA contains a helix-turn-helix motif typical of DNA binding proteins and belongs to the TetR family of bacterial regulators. The homolog of the psrA gene was identified in P. aeruginosa; the protein showed 90% identity to PsrA of P. putida. A psrA::Tn5 insertion mutant of P. aeruginosa was constructed. In both Pseudomonas species, psrA was genetically linked to the SOS lexA repressor gene. Similar to what was observed for P. putida, a psrA null mutant of P. aeruginosa also showed a 90% reduction in rpoS promoter activity; both mutants could be complemented for rpoS promoter activity when the psrA gene was provided in trans. psrA mutants of both Pseudomonas species lost the ability to induce rpoS expression at stationary phase, but they retained the ability to produce quorum-sensing autoinducer molecules. PsrA was demonstrated to negatively regulate psrA gene expression in Pseudomonas and in Escherichia coli as well as to be capable of activating the rpoS promoter in E. coli. Our data suggest that PsrA is an important regulatory protein of Pseudomonas spp. involved in the regulatory cascade controlling rpoS gene regulation in response to cell density.  相似文献   

16.
In a speG-disrupted Escherichia coli mutant, which cannot metabolize spermidine to acetylspermidine, addition of spermidine to the medium caused a decrease in cell viability at the late stationary phase of growth. There were parallel decreases in the levels of ribosome modulation factor (RMF), the sigma(38) subunit of RNA polymerase, and the outer membrane protein C (OmpC). To clarify that these three proteins are strongly involved in cell viability, the rmf, rpoS (encoding sigma(38)), and ompC genes were disrupted. Viability of the triple mutant decreased to less than 1% of normal cells. The triple mutant had a reduced cell viability compared to any combination of double mutants, which also had a reduced cell viability. The single rmf and rpoS, but not ompC, mutant only slightly reduced cell viability. The results indicate that cooperative functions of these three proteins are necessary for cell viability at the late stationary phase. The triple mutant had a reduced level of ribosomes and of intracellular cations.  相似文献   

17.
18.
19.
Most grape juice fermentation takes place when yeast cells are in a nondividing state called the stationary phase. Under such circumstances, we aimed to identify the genetic determinants controlling longevity, known as the chronological life span. We identified commercial strains with both short (EC1118) and long (CSM) life spans in laboratory growth medium and compared them under diverse conditions. Strain CSM shows better tolerance to stresses, including oxidative stress, in the stationary phase. This is reflected during winemaking, when this strain has an increased maximum life span. Compared to EC1118, CSM overexpresses a mitochondrial rhodanese gene-like gene, RDL2, whose deletion leads to increased reactive oxygen species production at the end of fermentation and a correlative loss of viability at this point. EC1118 shows faster growth and higher expression of glycolytic genes, and this is related to greater PKA activity due to the upregulation of the adenylate cyclase gene. This phenotype has been linked to the presence of a δ element in its promoter, whose removal increases the life span. Finally, EC1118 exhibits a higher level of protein degradation by autophagy, which might help achieve fast growth at the expense of cellular structures and may be relevant for long-term survival under winemaking conditions.  相似文献   

20.
Accumulation of spermidine in Escherichia coli causes a decrease in cell viability at the late stationary phase of cell growth. The mechanism underlying this effect has been studied. Spermidine accumulation caused an increase in the level of ppGpp and a decrease in ribosome modulation factor (RMF) and stationary phase-specific sigma factor sigma(S), both of which are believed to be involved in cell viability. Transformation of E. coli with the gene for stringent factor, which synthesizes ppGpp, also caused a significant decrease in the levels of RMF and sigma(S) factor and a decrease in cell viability. The results strongly suggest that the accumulation of ppGpp is also involved in the decrease in cell viability and that the sigma(S) factor assists the function of RMF in cell viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号