首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The H2-splitting active site of [NiFe] hydrogenases is tightly bound to the protein matrix via four conserved cysteine residues. In this study, the nickel-binding cysteine residues of HoxC, the large subunit of the H2-sensing regulatory hydrogenase (RH) from Ralstonia eutropha, were replaced by serine. All four mutant proteins, C60S, C63S, C479S, and C482S, were inactive both in H2 sensing and H2 oxidation and did not adopt the native oligomeric structure of the RH. Nickel was bound only to the C482S derivative. The assembly of the [NiFe] active site is a complex process that requires the function of at least six accessory proteins. Among these proteins, HypC has been shown to act as a chaperone for the large subunit during the maturation process. Immunoblot analysis revealed the presence of a strong RH-dependent HypC-specific complex in extracts containing the C60S, C63S, and C482S derivatives, pointing to a block in maturation for these mutant proteins. The lack of this complex in the extract containing C479S indicates that this specific cysteine residue might be crucial for the interaction between HoxC and HypC.This work is dedicated to Prof. H.G. Schlegel on the occasion of his 80th birthday.  相似文献   

2.
3.
Hydrogenases, abundant proteins in the microbial world, catalyze cleavage of H2 into protons and electrons or the evolution of H2 by proton reduction. Hydrogen metabolism predominantly occurs in anoxic environments mediated by hydrogenases, which are sensitive to inhibition by oxygen. Those microorganisms, which thrive in oxic habitats, contain hydrogenases that operate in the presence of oxygen. We have selected the H2-sensing regulatory [NiFe] hydrogenase of Ralstonia eutropha H16 to investigate the molecular background of its oxygen tolerance. Evidence is presented that the shape and size of the intramolecular hydrophobic cavities leading to the [NiFe] active site of the regulatory hydrogenase are crucial for oxygen insensitivity. Expansion of the putative gas channel by site-directed mutagenesis yielded mutant derivatives that are sensitive to inhibition by oxygen, presumably because the active site has become accessible for oxygen. The mutant proteins revealed characteristics typical of standard [NiFe] hydrogenases as described for Desulfovibrio gigas and Allochromatium vinosum. The data offer a new strategy how to engineer oxygen-tolerant hydrogenases for biotechnological application.  相似文献   

4.
The soluble NAD+-reducing Ni-Fe hydrogenase (SH) from Ralstonia eutropha H16 is remarkable because it cleaves hydrogen in the presence of dioxygen at a unique Ni-Fe active site (Burgdorf et al. (2005) J. Am. Chem. Soc. 127, 576). By X-ray absorption (XAS), FTIR, and EPR spectroscopy, we monitored the structure and oxidation state of its metal centers during H2 turnover. In NADH-activated protein, a change occurred from the (CN)O2Ni(II)(mu-S)2Fe(II)(CN)3(CO) site dominant in the wild-type SH to a standard-like S2Ni(II)(mu-S)2Fe(II)(CN)2(CO) site as the prevailing species in a specific mutant protein, HoxH-H16L. The wild-type SH primarily was active in H2 cleavage. The nonstandard reaction mechanism does not involve stable EPR-detectable trivalent Ni oxidation states, namely, the Ni-A,B,C states as observed in standard hydrogenases. In the HoxH-mutant protein H16L, H2 oxidation was impaired, but H2 production occurred via a stable Ni-C state (Ni(III)-H(-)-Fe(II)), suggesting a reaction sequence similar to that of standard hydrogenases. It is proposed that reductive activation by NADH of both wild-type and H16L proteins causes the release of an oxygen species from Ni and is initiated by electron transfer from a [2Fe-2S] cluster in the HoxU subunit that at first becomes reduced by electrons from NADH. Electrons derived from H2 cleavage, on the other hand, are transferred to NAD+ via a different pathway involving a [4Fe-4S] cluster in HoxY, which is reducible only in wild-type SH but not in the H16L variant.  相似文献   

5.
The regulatory Ni-Fe hydrogenase (RH) from Ralstonia eutropha which forms a [HoxBC]2 complex functions as a hydrogen sensor under aerobic conditions. We have studied a novel Strep-tag isolate of the RH large subunit, HoxC(ST), which lacks the Fe-S clusters of HoxB, allowing for structure determination of the catalytic site by X-ray absorption spectroscopy both at the Ni and, for the first time, also at the Fe K-edge. This technique, together with Fourier-transform infrared spectroscopy, revealed a Ni-Fe site with [O1(CysS)2Ni(II)(mu-SCys)2Fe(II)(CN)2(CO)] structure in about 50% of HoxC(ST) and a [(CysS)2Fe(II)(CN)2(CO)] site lacking Ni in the remainder protein. Possibly both sites may be intermediates in the maturation process of the RH.  相似文献   

6.
In this study, a propionate CoA-transferase (H16_A2718; EC 2.8.3.1) from Ralstonia eutropha H16 (Pct Re ) was characterized in detail. Glu342 was identified as catalytically active amino acid residue via site-directed mutagenesis. Activity of Pct Re was irreversibly lost after the treatment with NaBH4 in the presence of acetyl-CoA as it is shown for all CoA-transferases from class I, thereby confirming the formation of the covalent enzyme-CoA intermediate by Pct Re . In addition to already known CoA acceptors for Pct Re such as 3-hydroxypropionate, 3-hydroxybutyrate, acrylate, succinate, lactate, butyrate, crotonate and 4-hydroxybutyrate, it was found that glycolate, chloropropionate, acetoacetate, valerate, trans-2,3-pentenoate, isovalerate, hexanoate, octanoate and trans-2,3-octenoate formed also corresponding CoA-thioesters after incubation with acetyl-CoA and Pct Re . Isobutyrate was found to be preferentially used as CoA acceptor amongst other carboxylates tested in this study. In contrast, no products were detected with acetyl-CoA and formiate, bromopropionate, glycine, pyruvate, 2-hydroxybutyrate, malonate, fumarate, itaconate, β-alanine, γ-aminobutyrate, levulate, glutarate or adipate as potential CoA acceptor. Amongst CoA donors, butyryl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA, isobutyryl-CoA, succinyl-CoA and valeryl-CoA apart from already known propionyl-CoA and acetyl-CoA could also donate CoA to acetate. The highest rate of the reaction was observed with 3-hydroxybutyryl-CoA (2.5 μmol mg?1 min?1). K m values for propionyl-CoA, acetyl-CoA, acetate and 3-hydroxybutyrate were 0.3, 0.6, 4.5 and 4.3 mM, respectively. The rather broad substrate range might be a good starting point for enzyme engineering approaches and for the application of Pct Re in biotechnological polyester production.  相似文献   

7.
This study describes metabolite profiles of Ralstonia eutropha H16 focusing on biosynthesis of polyhydroxyalkanoates (PHAs), bacterial polyesters attracted as biodegradable bio-based plastics. As CoA-thioesters are important intermediates in PHA biosynthesis, four kinds of acyl-CoAs with medium chain length were prepared and used to establish analytical conditions for capillary electrophoresis-electron spray ionization-tandem mass spectrometry (CE–ESI-MS/MS). Metabolites were extracted from R. eutropha cells in growth, PHA production, and stationary phases on fructose and PHA production phase on octanoate, and subjected to stable isotope dilution-based comparative quantification by multiple reaction monitoring using CE–ESI-MS/MS and 13C-labeled metabolites prepared by extraction from R. eutropha mutant grown on U-13C6-glucose. This procedure allowed to quantify relative changes of 94 ionic metabolites including CoA-thioesters. Hexose-phosphates except for glucose 1-phosphate were decreased in the PHA production phase than in the growth phase, suggesting reduced flux of sugar degradation after the cell growth. Several intermediates in TCA cycle and gluconeogenesis were increased in the PHA production phase on octanoate. Interestingly, ribulose 1,5-bisphosphate were detected in all the samples examined, raising possibilities of CO2 fixation by Calvin–Benson–Bassham cycle in this bacterium even under heterotrophic growth conditions. Turnover of acyl moieties through β-oxidation was suggested to be active on fructose, as CoA-thioesters of C6 and C8 were detected in the fructose-grown cells. In addition, major metabolic pools in R. eutropha cells were estimated from the signal intensities. The results of the present study provided new insights into global metabolisms in PHA-producing R. eutropha.  相似文献   

8.
Soluble NAD-reducing [NiFe]-hydrogenase (SH) from Ralstonia eutropha (formerly Alcaligenes eutrophus) has an infrared spectrum with one strong band at 1956 cm(-1) and four weak bands at 2098, 2088, 2081 and 2071 cm(-1) in the 2150-1850 cm(-1) spectral region. Other [NiFe]-hydrogenases only show one strong and two weak bands in this region, attributable to the NiFe(CN)2(CO) active site. The position of these three bands is highly sensitive to redox changes of the active site. In contrast, reduction of the SH resulted in a shift to lower frequencies of the 2098 cm(-1) band only. These and other properties prompted us to propose the presence of a Ni(CN)Fe(CN)3(CO) active site.  相似文献   

9.
Ralstonia eutropha is a strictly respiratory facultative lithoautotrophic beta-proteobacterium. In the absence of organic substrates, H2 and CO2 are used as sole sources of energy and carbon. In the absence of oxygen, the organism can respire by denitrification. The recent determination of the complete genome sequence of strain H16 provides the opportunity to reconcile the results of previous physiological and biochemical studies in light of the coding capacity. These analyses revealed genes for several isoenzymes, permit assignment of well-known physiological functions to previously unidentified genes, and suggest the presence of unknown components of energy metabolism. The respiratory chain is fueled by two NADH dehydrogenases, two uptake hydrogenases and at least three formate dehydrogenases. The presence of genes for five quinol oxidases and three cytochrome oxidases indicates that the aerobic respiration chain adapts to varying concentrations of dioxygen. Several additional components may act in balancing or dissipation of redox energy. Paralogous sets of nitrate reductase and nitric oxide reductase genes result in enzymatic redundancy for denitrification.  相似文献   

10.
11.
Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg2+, Ca2+, and Mn2+ were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.  相似文献   

12.
Nitric oxide (NO) reductase was purified from Ralstonia eutropha (formerly Alcaligenes eutrophus) using a two step chromatographic procedure. Unlike the common NO reductases, the enzyme consists of a single subunit of 75 kDa which contains both high-spin and low-spin heme b, but lacks heme c. One additional iron atom, probably a ferric non-heme iron, was identified per enzyme molecule. Whereas reduced cytochrome c was ineffective as electron donor, NO was reduced at a specific activity of 2.3 micromol/min per mg of protein in the presence of 2-methyl-1,4-naphthoquinol.  相似文献   

13.
1. Phosphoribulokinase was purified 286-fold from extracts of autotrophically grown cells. 2. The enzyme had a molecular weight of 237000 and showed a pH optimum of 9.0 in both crude extracts and purified preparation. MgCl(2) was required for activity; full activation was obtained at 5mm-MgCl(2) and the K(m) was approx. 0.5mm. 3. The ATP-saturation curve was sigmoidal and the degree of positive co-operativity increased at higher MgCl(2) concentrations. The ATP-binding sites appeared to be non-interacting at low ribulose 5-phosphate concentrations. 4. Lineweaver-Burk plots for ribulose 5-phosphate showed abrupt transitions between apparently linear sections. The apparent K(m) and V(max.) values increased with increasing concentrations of ribulose phosphate. The transitions may be explained by a sequence of negative and positive co-operativity in the catalytic rate constants. 5. Phosphoribulokinase activity was inhibited by AMP and phosphoenolpyruvate and was activated by NADH. The presence of AMP or phosphoenolpyruvate increased s(0.5) (substrate concentration required for half-maximal velocity) for both ribulose 5-phosphate and ATP but V(max.) was not changed. The sigmoidicity of the ATP-saturation curve increased in the presence of AMP but was not affected by phosphoenolpyruvate. The transitions in the ribulose 5-phosphate-saturation curves were more abrupt in the presence of either inhibitor. NADH lowered the s(0.5) for both ribulose 5-phosphate and ATP. The activator did not affect the degree of positive co-operativity between ATP-binding sites, but the ribulose 5-phosphate-binding sites appeared to be non-interacting in its presence. 6. A sequence of positive and negative co-operativity in the interactions of AMP-binding sites was suggested by the Hill plots. In the presence of NADH (and phosphoenolpyruvate) the sensitivity to inhibition by AMP was less below a certain AMP concentration and increased above that concentration. 7. Examination of the interactions between ligands indicated that phosphoribulokinase can be regulated effectively by changes in effector concentrations similar to those reported to occur in vivo.  相似文献   

14.
15.
The membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha H16 undergoes a complex maturation process comprising cofactor assembly and incorporation, subunit oligomerization, and finally twin-arginine-dependent membrane translocation. Due to its outstanding O(2) and CO tolerance, the MBH is of biotechnological interest and serves as a molecular model for a robust hydrogen catalyst. Adaptation of the enzyme to oxygen exposure has to take into account not only the catalytic reaction but also biosynthesis of the intricate redox cofactors. Here, we report on the role of the MBH-specific accessory proteins HoxR and HoxT, which are key components in MBH maturation at ambient O(2) levels. MBH-driven growth on H(2) is inhibited or retarded at high O(2) partial pressure (pO(2)) in mutants inactivated in the hoxR and hoxT genes. The ratio of mature and nonmature forms of the MBH small subunit is shifted toward the precursor form in extracts derived from the mutant cells grown at high pO(2). Lack of hoxR and hoxT can phenotypically be restored by providing O(2)-limited growth conditions. Analysis of copurified maturation intermediates leads to the conclusion that the HoxR protein is a constituent of a large transient protein complex, whereas the HoxT protein appears to function at a final stage of MBH maturation. UV-visible spectroscopy of heterodimeric MBH purified from hoxR mutant cells points to alterations of the Fe-S cluster composition. Thus, HoxR may play a role in establishing a specific Fe-S cluster profile, whereas the HoxT protein seems to be beneficial for cofactor stability under aerobic conditions.  相似文献   

16.
Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3′-thiodipropionic acid (TDP) and 3,3′-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs.  相似文献   

17.
The tetrameric cytoplasmic [NiFe] hydrogenase (SH) of Ralstonia eutropha couples the oxidation of hydrogen to the reduction of NAD(+) under aerobic conditions. In the catalytic subunit HoxH, all six conserved motifs surrounding the [NiFe] site are present. Five of these motifs were altered by site-directed mutagenesis in order to dissect the molecular mechanism of hydrogen activation. Based on phenotypic characterizations, 27 mutants were grouped into four different classes. Mutants of the major class, class I, failed to grow on hydrogen and were devoid of H(2)-oxidizing activity. In one of these isolates (HoxH I64A), H(2) binding was impaired. Class II mutants revealed a high D(2)/H(+) exchange rate relative to a low H(2)-oxidizing activity. A representative (HoxH H16L) displayed D(2)/H(+) exchange but had lost electron acceptor-reducing activity. Both activities were equally affected in class III mutants. Mutants forming class IV showed a particularly interesting phenotype. They displayed O(2)-sensitive growth on hydrogen due to an O(2)-sensitive SH protein.  相似文献   

18.
The oxygen-tolerant membrane-bound [NiFe]-hydrogenase (MBH) from Ralstonia eutropha H16 consists of three subunits. The large subunit HoxG carries the [NiFe] active site, and the small subunit HoxK contains three [FeS] clusters. Both subunits form the so-called hydrogenase module, which is oriented toward the periplasm. Membrane association is established by a membrane-integral cytochrome b subunit (HoxZ) that transfers the electrons from the hydrogenase module to the respiratory chain. So far, it was not possible to isolate the MBH in its native heterotrimeric state due to the loss of HoxZ during the process of protein solubilization. By using the very mild detergent digitonin, we were successful in isolating the MBH hydrogenase module in complex with the cytochrome b. H(2)-dependent reduction of the two HoxZ-stemming heme centers demonstrated that the hydrogenase module is productively connected to the cytochrome b. Further investigation provided evidence that the MBH exists in the membrane as a high molecular mass complex consisting of three heterotrimeric units. The lipids phosphatidylethanolamine and phosphatidylglycerol were identified to play a role in the interaction of the hydrogenase module with the cytochrome b subunit.  相似文献   

19.
Ralstonia eutropha H16 is an H2‐oxidizing, facultative chemolithoautotroph. Using 2‐DE in conjunction with peptide mass spectrometry we have cataloged the soluble proteins of this bacterium during growth on different substrates: (i) H2 and CO2, (ii) succinate and (iii) glycerol. The first and second conditions represent purely lithoautotrophic and purely organoheterotrophic nutrition, respectively. The third growth regime permits formation of the H2‐oxidizing and CO2‐fixing systems concomitant to utilization of an organic substrate, thus enabling mixotrophic growth. The latter type of nutrition is probably the relevant one with respect to the situation faced by the organism in its natural habitats, i.e. soil and mud. Aside from the hydrogenase and Calvin‐cycle enzymes, the protein inventories of the H2‐CO2‐ and succinate‐grown cells did not reveal major qualitative differences. The protein complement of the glycerol‐grown cells resembled that of the lithoautotrophic cells. Phosphoenolpyruvate (PEP) carboxykinase was present under all three growth conditions, whereas PEP carboxylase was not detectable, supporting earlier findings that PEP carboxykinase is alone responsible for the anaplerotic production of oxaloacetate from PEP. The elevated levels of oxidative stress proteins in the glycerol‐grown cells point to a significant challenge by ROS under these conditions. The results reported here are in agreement with earlier physiological and enzymological studies indicating that R. eutropha H16 has a heterotrophic core metabolism onto which the functions of lithoautotrophy have been grafted.  相似文献   

20.
The H(2)-oxidizing lithoautotrophic bacterium Ralstonia eutropha H16 is a metabolically versatile organism capable of subsisting, in the absence of organic growth substrates, on H(2) and CO(2) as its sole sources of energy and carbon. R. eutropha H16 first attracted biotechnological interest nearly 50 years ago with the realization that the organism's ability to produce and store large amounts of poly[R-(-)-3-hydroxybutyrate] and other polyesters could be harnessed to make biodegradable plastics. Here we report the complete genome sequence of the two chromosomes of R. eutropha H16. Together, chromosome 1 (4,052,032 base pairs (bp)) and chromosome 2 (2,912,490 bp) encode 6,116 putative genes. Analysis of the genome sequence offers the genetic basis for exploiting the biotechnological potential of this organism and provides insights into its remarkable metabolic versatility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号