首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The frequency and magnitude of extreme events are predicted to increase under future climate change. Despite recent advancements, we still lack a detailed understanding of how changes in the frequency and amplitude of extreme climate events are linked to the temporal and spatial structure of natural communities. To answer this question, we used a combination of laboratory experiments, field experiments, and analysis of multi‐year field observations to reveal the effects of extreme high temperature events on the demographic rates and relative dominance of three co‐occurrence aphid species which differ in their transmission efficiency of different agricultural pathogens. We then linked the geographical shift in their relative dominance to frequent extreme high temperatures through a meta‐analysis. We found that both frequency and amplitude of extreme high temperatures altered demographic rates of species. However, these effects were species‐specific. Increasing the frequency and amplitude of extreme temperature events altered which species had the highest fitness. Importantly, this change in relative fitness of species was consistent with significant changes in the relative dominance of species in natural communities in a 1 year long field heating experiment and 6 year long field survey of natural populations. Finally, at a global spatial scale, we found the same relationship between relative abundance of species and frequency of extreme temperatures. Together, our results indicate that changes in frequency and amplitude of extreme high temperatures can alter the temporal and spatial structure of natural communities, and that these changes are driven by asymmetric effects of high temperatures on the demographic rates and fitness of species. They also highlight the importance of understanding how extreme events affect the life‐history of species for predicting the impacts of climate change at the individual and community level, and emphasize the importance of using a broad range of approaches when studying climate change.  相似文献   

2.
Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050–2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.  相似文献   

3.
Predator effects on herbivore and plant stability   总被引:3,自引:1,他引:2  
Humans are rapidly altering the diversity and composition of ecological communities by accelerating rates of species extinctions and introductions. These changes in diversity are not random and disproportionately involve the addition or extinction of predators. Theoretical and microcosm studies suggest predator removal may either increase or decrease ecosystem stability. Here we test whether the addition or removal of predators affects aggregate biomass stability in 40 experiments carried out in six different ecosystems. Predators did not alter the temporal variability of autotroph biomass, but significantly destabilized herbivore biomass. The effects of predators on herbivore biomass stability varied significantly among ecosystems, with benthic and pelagic lake systems showing the greatest shifts. Consequently, the addition of predators to communities, as occurs in many conservation efforts, biological control programmes and species introductions, may lead to more variable system dynamics.  相似文献   

4.
As global climate change and variability drive shifts in species’ distributions, ecological communities are being reorganized. One approach to understand community change in response to climate change has been to characterize communities by a collective thermal preference, or community temperature index (CTI), and then to compare changes in CTI with changes in temperature. However, important questions remain about whether and how responsive communities are to changes in their local thermal environments. We used CTI to analyze changes in 160 marine assemblages (fish and invertebrates) across the rapidly‐changing Northeast U.S. Continental Shelf Large Marine Ecosystem and calculated expected community change based on historical relationships between species presence and temperature from a separate training dataset. We then compared interannual and long‐term temperature changes with expected community responses and observed community responses over both temporal scales. For these marine communities, we found that community composition as well as composition changes through time could be explained by species associations with bottom temperature. Individual species had non‐linear responses to changes in temperature, and these nonlinearities scaled up to a nonlinear relationship between CTI and temperature. On average, CTI increased by 0.36°C (95% CI: 0.34–0.38°C) for every 1°C increase in bottom temperature, but the relationship between CTI and temperature also depended on community composition. In addition, communities responded more strongly to interannual variation than to long‐term trends in temperature. We recommend that future research into climate‐driven community change accounts for nonlinear responses and examines ecological responses across a range of temporal and geographical scales.  相似文献   

5.
Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.  相似文献   

6.

Background

It is anticipated that extreme population events, such as extinctions and outbreaks, will become more frequent as a consequence of climate change. To evaluate the increased probability of such events, it is crucial to understand the mechanisms involved. Variation between individuals in their response to climatic factors is an important consideration, especially if microevolution is expected to change the composition of populations.

Methodology/Principal Findings

Here we present data of a willow leaf beetle species, showing high variation among individuals in oviposition rate at a high temperature (20°C). It is particularly noteworthy that not all individuals responded to changes in temperature; individuals laying few eggs at 20°C continued to do so when transferred to 12°C, whereas individuals that laid many eggs at 20°C reduced their oviposition and laid the same number of eggs as the others when transferred to 12°C. When transferred back to 20°C most individuals reverted to their original oviposition rate. Thus, high variation among individuals was only observed at the higher temperature. Using a simple population model and based on regional climate change scenarios we show that the probability of outbreaks increases if there is a realistic increase in the number of warm summers. The probability of outbreaks also increased with increasing heritability of the ability to respond to increased temperature.

Conclusions/Significance

If climate becomes warmer and there is latent variation among individuals in their temperature response, the probability for outbreaks may increase. However, the likelihood for microevolution to play a role may be low. This conclusion is based on the fact that it has been difficult to show that microevolution affect the probability for extinctions. Our results highlight the urge for cautiousness when predicting the future concerning probabilities for extreme population events.  相似文献   

7.
Observed changes in mean temperature and increased frequency of extreme climate events have already impacted the distributions and phenologies of various organisms, including insects. Although some research has examined how parasitoids will respond to colder temperatures or experimental warming, we know relatively little about how increased variation in temperature and humidity could affect interactions between parasitoids and their hosts. Using a study system consisting of emerald ash borer (EAB), Agrilus planipennis, and its egg parasitoid Oobius agrili, we conducted environmentally controlled laboratory experiments to investigate how increased seasonal climate variation affected the synchrony of host–parasitoid interactions. We hypothesized that increased climate variation would lead to decreases in host and parasitoid survival, host fecundity, and percent parasitism (independent of host density), while also influencing percent diapause in parasitoids. EAB was reared in environmental chambers under four climate variation treatments (standard deviations in temperature of 1.24, 3.00, 3.60, and 4.79°C), while Oagrili experiments were conducted in the same environmental chambers using a 4 × 3 design (four climate variation treatments × 3 EAB egg densities). We found that EAB fecundity was negatively associated with temperature variation and that temperature variation altered the temporal egg laying distribution of EAB. Additionally, even moderate increases in temperature variation affected parasitoid emergence times, while decreasing percent parasitism and survival. Furthermore, percent diapause in parasitoids was positively associated with humidity variation. Our findings indicate that relatively small changes in the frequency and severity of extreme climate events have the potential to phenologically isolate emerging parasitoids from host eggs, which in the absence of alternative hosts could lead to localized extinctions. More broadly, these results indicate how climate change could affect various life history parameters in insects, and have implications for consumer–resource stability and biological control.  相似文献   

8.
1.?Theory suggests that the relationship between predator diversity and prey suppression should depend on variation in predator traits such as body size, which strongly influences the type and strength of species interactions. Prey species often face a range of different sized predators, and the composition of body sizes of predators can vary between communities and within communities across seasons. 2.?Here, I test how variation in size structure of predator communities influences prey survival using seasonal changes in the size structure of a cannibalistic population as a model system. Laboratory and field experiments showed that although the per-capita consumption rates increased at higher predator-prey size ratios, mortality rates did not consistently increase with average size of cannibalistic predators. Instead, prey mortality peaked at the highest level of predator body size diversity. 3.?Furthermore, observed prey mortality was significantly higher than predictions from the null model that assumed no indirect interactions between predator size classes, indicating that different sized predators were not substitutable but had more than additive effects. Higher predator body size diversity therefore increased prey mortality, despite the increased potential for behavioural interference and predation among predators demonstrated in additional laboratory experiments. 4.?Thus, seasonal changes in the distribution of predator body sizes altered the strength of prey suppression not only through changes in mean predator size but also through changes in the size distribution of predators. In general, this indicates that variation (i.e. diversity) within a single trait, body size, can influence the strength of trophic interactions and emphasizes the importance of seasonal shifts in size structure of natural food webs for community dynamics.  相似文献   

9.
The impacts of climate change on species and ecosystems are increasingly evident. While these tend to be clearest with respect to changes in phenology and distribution ranges, there are also important consequences for population sizes and community structure. There is an urgent need to develop ecological indicators that can be used to detect climate-driven changes in ecological communities, and identify how those impacts may vary spatially. Here we describe the development of a new community-based seasonal climate change indicator that uses national population and weather indices. We test this indicator using Lepidopteran and co-located weather data collected across a range of UK Environmental Change Network (ECN) sites. We compare our butterfly indicator with estimates derived from an alternative, previously published metric, the Community Temperature Index (CTI).First, we quantified the effect of temperature on population growth rates of moths and butterflies (Species Temperature Response, STR) by modelling annual variation in national population indices as a function of nationally averaged seasonal variation in temperature, using species and weather data independent of the ECN data. Then, we calculated average STRs for annually summarised species data from each ECN site, weighted by species’ abundance, to produce the Community Temperature Response (CTR). Finally, we tested the extent to which CTR correlated with spatial variation in temperature between sites and the extent to which temporal variation in CTR tracked both annual and seasonal warming trends.Mean site CTR was positively correlated with mean site temperature for moths but not butterflies. However, spatial variation in moth communities was well explained by mean site summer temperature and butterfly communities by winter temperature, respectively accounting for 74% and 63% of variation. Temporal variation in moth and butterfly CTR within sites did not vary with the mean annual temperature but responded to variation in the mean temperature of specific seasons. There were positive correlations between moth seasonal CTRs and seasonal temperatures in winter, spring and summer; and butterfly seasonal CTRs and seasonal temperatures in winter and summer. Butterfly CTR and CTI both correlated spatially and temporally with winter temperature.Our results highlight the need for seasonality to be considered when examining the impact of climate change on communities. Seasonal CTRs may be used to track the impact of changing temperatures on biodiversity and help identify potential mechanisms by which climate change is affecting communities. In the case of Lepidoptera, our results suggest that future warming may reassemble Lepidoptera communities.  相似文献   

10.
Beta diversity quantifies spatial and/or temporal variation in species composition. It is comprised of two distinct components, species replacement and nestedness, which derive from opposing ecological processes. Using Scotland as a case study and a β‐diversity partitioning framework, we investigate temporal replacement and nestedness patterns of coastal grassland species over a 34‐yr time period. We aim to 1) understand the influence of two potentially pivotal processes (climate and land‐use changes) on landscape‐scale (5 × 5 km) temporal replacement and nestedness patterns, and 2) investigate whether patterns from one β‐diversity component can mask observable patterns in the other. We summarised key aspects of climate driven macro‐ecological variation as measures of variance, long‐term trends, between‐year similarity and extremes, for three important climatic predictors (minimum temperature, water‐balance and growing degree‐days). Shifts in landscape‐scale heterogeneity, a proxy of land‐use change, was summarised as a spatial multiple‐site dissimilarity measure. Together, these climatic and spatial predictors were used in a multi‐model inference framework to gauge the relative contribution of each on temporal replacement and nestedness patterns. Temporal β‐diversity patterns were reasonably well explained by climate change but weakly explained by changes in landscape‐scale heterogeneity. Climate was shown to have a greater influence on temporal nestedness than replacement patterns over our study period, linking nestedness patterns, as a result of imbalanced gains and losses, to climatic warming and extremes respectively. Important climatic predictors (i.e. growing degree‐days) of temporal β‐diversity were also identified, and contrasting patterns between the two β‐diversity components revealed. Results suggest climate influences plant species recruitment and establishment processes of Scotland's coastal grasslands, and while species extinctions take time, they are likely to be facilitated by climatic perturbations. Our findings also highlight the importance of distinguishing between different components of β‐diversity, disentangling contrasting patterns than can mask one another.  相似文献   

11.
Many studies reported biotic change along a continental warming gradient. However, the temporal and spatial change of tree diversity and their sensitivity to climate warming might differ from region to region. Understanding of the variation among studies with regard to the magnitude of such biotic changes is minimal, especially in montane ecosystems. Our aim is to better understand changes in spatial heterogeneity and temporal dynamics of mountain tree communities under climate warming over the past four decades. In 2017, we resurveyed and recorded all tree species from 107 long‐term monitoring plots that were first studied between 1974 and 1976. These plots were located in montane forests in the Giant Panda National Park (GPNP), China. Our results showed that spatial differences were found in tree species diversity changes response to mean annual temperature change over the past four decades. Tree species richness increased significantly under climate warming in Minshan (MS) and Xiaoxiangling (XXL) with higher warming rate than Qionglai (QLS) and Liangshan (LS). The trees species diversity in MS and XXL were more sensitive to climatic warming. MS and XXL should receive priority protection in the next conservation plan of the GPNP. The GPNP should avoid taking a “one‐size‐fits‐all” approach for diversity conservation due to spatial heterogeneity in plant community dynamics.  相似文献   

12.
Pulmonate land snails are often polymorphic in their shell coloration pattern. To quantify the contribution of environmental parameters to the nondirectional change in phenotypic variation, we used a historic dataset on Theba pisana morph frequencies and climate data for statistical modelling. We found significant correlations of the degree of phenotypic diversity between juveniles and corresponding adult individuals within the same and the subsequent generation. Among climate parameters, the phenotypic diversity of adults correlated significantly and positively with the mean and maximum ambient temperatures in the winter and spring only. There was no correlation between high or low temperatures and the frequency of distinct morphs. Akaike's information criterion‐based model selection revealed the particular importance of only parental phenotypic diversity for next generation juvenile phenotypic diversity. By contrast, phenotypic diversity of the juveniles of the preceding year and the mean temperatures in winter and spring were important for the phenotypic diversity of adult snails. Approximately two‐thirds of the explicable variation in phenotypic diversity of adults was explained by inheritance and approximately one‐third was expained by ambient temperature. The present study shows that genetics and temperature interact to generate nondirectional changes in phenotypic variation within populations, which also can be reflected by changes in the phenotype of individuals. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 241–256.  相似文献   

13.
Facing an increased threat of rapid climate change in cold‐climate regions, it is important to understand the sensitivity of plant communities both in terms of degree and direction of community change. We studied responses to 3–5 years of moderate experimental warming by open‐top chambers in two widespread but contrasting tundra communities in Iceland. In a species‐poor and nutrient‐deficient moss heath, dominated by Racomitrium lanuginosum, mean daily air temperatures at surface were 1–2°C higher in the warmed plots than the controls whereas soil temperatures tended to be lower in the warmed plots throughout the season. In a species‐rich dwarf shrub heath on relatively rich soils at a cooler site, dominated by Betula nana and R. lanuginosum, temperature changes were in the same direction although more moderate. In the moss heath, there were no detectable community changes while significant changes were detected in the dwarf shrub heath: the abundance of deciduous and evergreen dwarf shrubs significantly increased (>50%), bryophytes decreased (18%) and canopy height increased (100%). Contrary to some other studies of tundra communities, we detected no changes in species richness or other diversity measures in either community and the abundance of lichens did not change. It is concluded that the sensitivity of Icelandic tundra communities to climate warming varies greatly depending on initial conditions in terms of species diversity, dominant species, soil and climatic conditions as well as land‐use history.  相似文献   

14.
Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature.  相似文献   

15.
Non-vagile taxa such as terrestrial molluscs are susceptible to stochastic environmental events that can cause local extinctions or population declines, and extinctions of terrestrial mollusc species are among the highest documented. Many terrestrial snails are habitat specialists, and genetic studies using both allozyme and DNA sequence data have indicated that many species contain substantial and geographically structured genetic variation. In this study, we assess the genetic variation within two species of the rare terrestrial snail genus Prestonella, an inhabitant of rocky areas along water courses in the southern Great Escarpment of South Africa, and correlate genetic diversity to climatic variables. DNA sequence data from mitochondrial 16S rDNA and partial cytochrome oxidase I genes indicate that neither species is monophyletic, and that populations are deeply divergent, even over distances of a few hundred metres. Principal components anaylsis of climatic variables derived from two databases indicates that genetic diversity of the populations is correlated to moisture-related climatic variables. Populations with little or no diversity occur in more arid regions, and are thus most at risk from any future climatic changes that would increase aridification. These moisture variables are thus potent drivers of genetic bottlenecks and may have resulted in historical climate filtering or limitation of the distribution of these species. Temperature appears to be a less important variable, a finding supported by physiological data based on heart rates that show that death occurs only at temperatures far higher than found in their environment.  相似文献   

16.
As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003–2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world.  相似文献   

17.
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller‐bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top‐down and bottom‐up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal‐transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non‐local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top‐down and bottom‐up control.  相似文献   

18.
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree‐ring records. Yet typical tree‐ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.  相似文献   

19.
Climate change may be a major threat to global biodiversity, especially to tropical species. Yet, why tropical species are more vulnerable to climate change remains unclear. Tropical species are thought to have narrower physiological tolerances to temperature, and they have already experienced a higher estimated frequency of climate-related local extinctions. These two patterns suggest that tropical species are more vulnerable to climate change because they have narrower thermal niche widths. However, no studies have tested whether species with narrower climatic niche widths for temperature have experienced more local extinctions, and if these narrower niche widths can explain the higher frequency of tropical local extinctions. Here, we test these ideas using resurvey data from 538 plant and animal species from 10 studies. We found that mean niche widths among species and the extent of climate change (increase in maximum annual temperatures) together explained most variation (>75%) in the frequency of local extinction among studies. Surprisingly, neither latitude nor occurrence in the tropics alone significantly predicted local extinction among studies, but latitude and niche widths were strongly inversely related. Niche width also significantly predicted local extinction among species, as well as among and (sometimes) within studies. Overall, niche width may offer a relatively simple and accessible predictor of the vulnerability of populations to climate change. Intriguingly, niche width has the best predictive power to explain extinction from global warming when it incorporates coldest yearly temperatures.  相似文献   

20.
Temporal patterns in communities have gained widespread attention recently, to the extent that temporal changes in community composition are now termed “temporal beta‐diversity.” Previous studies of beta‐diversity have made use of two classes of dissimilarity indices: incidence‐based (e.g., Sørensen and Jaccard dissimilarity) and abundance‐based (e.g., Bray–Curtis and Ružička dissimilarity). However, in the context of temporal beta‐diversity, the persistence of identical individuals and turnover among other individuals within the same species over time have not been considered, despite the fact that both will affect compositional changes in communities. To address this issue, I propose new index concepts for beta‐diversity and the relative speed of compositional shifts in relation to individual turnover based on individual identity information. Individual‐based beta‐diversity indices are novel dissimilarity indices that consider individual identity information to quantitatively evaluate temporal change in individual turnover and community composition. I applied these new indices to individually tracked tree monitoring data in deciduous and evergreen broad‐leaved forests across the Japanese archipelago with the objective of quantifying the effect of climate change trends (i.e., rates of change in both annual mean temperature and annual precipitation) on individual turnover and compositional shifts at each site. A new index explored the relative contributions of mortality and recruitment processes to temporal changes in community composition. Clear patterns emerged showing that an increase in the temperature change rate facilitated the relative contribution of mortality components. The relative speed of compositional shift increased with increasing temperature change rates in deciduous forests but decreased with increasing warming rates in evergreen forests. These new concepts provide a way to identify novel and high‐resolution temporal patterns in communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号