首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impacts of land use change on biodiversity and ecosystem functions are variable, particularly in fragmented tropical rainforest systems with high diversity. Dung beetles (Scarabaeinae) are an ideal group to investigate the relationship between land use change, diversity and ecosystem function as they are easily surveyed, sensitive to habitat modification and perform many ecosystem functions. Although this relationship has been investigated for dung beetles in some tropical regions, there has been no study assessing how native dung beetles in Australia's tropical rainforests respond to deforestation, and what the corresponding consequences are for dung removal (a key ecosystem function fulfilled by dung beetles). In this study we investigated the relationship between dung beetle community attributes (determined through trapping) and function (using dung removal experiments that allowed different dung beetle functional groups to access the dung) in rainforest and cleared pasture in a tropical landscape in Australia's Wet Tropics. Species richness, abundance and biomass were higher in rainforest compared to adjacent pasture, and species composition between these land use types differed significantly. However, average body size and evenness in body size were higher in pasture than in rainforest. Dung removal was higher in rainforest than in pasture when both functional groups or tunnelers only could access the dung. Increased dung removal in the rainforest was explained by higher biodiversity and dominance of a small number of species with distinct body sizes, as dung removal was best predicted by the evenness in body size of the community. Our findings suggest that functional traits (including body size and dung relocation behaviour) present in a dung beetle community are key drivers of dung removal. Overall, our results show that deforestation has reduced native dung beetle diversity in Australian tropical landscapes, which negatively impacts on the capacity for dung removal by dung beetles in this region.  相似文献   

2.
Traditional agro-pastoral practices are in decline over much of the Alps, resulting in the complete elimination of livestock grazing in some areas. Natural reforestation following pastoral abandonment may represent a significant threat to alpine biodiversity, especially that associated with open habitats. This study presents the first assessment of the potential effects of natural reforestation on dung beetles by exploring the relationships between the beetle community (abundance, diversity, species turnover and assemblage structure) and the vegetation stages of ecological succession following pastoral abandonment. A hierarchical sampling design was used in the montane belt of the Sessera Valley (north-western Italian Alps). Dung beetles were sampled across 16 sampling sites set in four habitat types corresponding to four different successional stages (pasture, shrub, pioneer forest and beech forest) at two altitudinal levels. The two habitats at the extremes of the ecological succession, i.e. pasture and beech forest, had the greatest effect on the structure of local dung beetle assemblages. Overall, dung beetle abundance was greater in beech forest, whereas species richness, Shannon diversity and taxonomic diversity were significantly higher in pasture, hence suggesting this latter habitat can be considered as a key conservation habitat. Forests and pastures shared a lower number of species than the other pairs of habitats (i.e. species turnover between these two habitats was the highest). The two intermediate seral stages, i.e. shrub and pioneer forest, showed low dung beetle abundance and diversity values. Local dung beetle assemblages were also dependent on season and altitude; early-arriving species were typical of pastures of high elevation, whereas late-arriving species were typical of beech forests. It is likely that grazing in the Alps will continue to decrease in the future leading to replacement of open habitats by forest. This study suggests therefore that, at least in the montane belt, reforestation may have potentially profound and negative effects on dung beetle diversity. Maintaining traditional pastoral activities appears to be the most promising approach to preserve open habitats and adjacent beech forests, resulting in the conservation of species of both habitats.  相似文献   

3.
Abstract.
  • 1 Competition in cattle dung pads between two dung beetles, Onthophagus ferox Harold and Onthophagus binodis Thunberg, and the bush fly, Musca vetustissima Walker, was investigated in laboratory experiments, to determine why spring fly abundance in the field did not fall following the introduction of O. binodis.
  • 2 At low beetle densities, the number of eggs laid by each species was reduced by the second species. A similar amount of dung was buried by each species alone or by both together.
  • 3 At high beetle densities O. binodis egg production was substantially affected by each additional O.ferox, but O.ferox egg production was not affected by each additional O.binodis. Asymmetric competition occurred because O.ferox buried more dung than O.binodis, and a greater proportion in day 1 (pre-emptive dung burial).
  • 4 O.ferox caused greater M. vetustissima egg-puparia mortality than O. binodis. Mortality mostly occurred in young M. vetustissima larvae less than 1 day old. Total egg-puparia fly mortality was correlated better with the dung buried on day 1 than dung buried on day 8 (pre-emptive dung burial). O.binodis did not add to fly mortality by O.ferox at high densities because of asymmetric competition between the beetles.
  相似文献   

4.
The Mediterranean region as a whole has the highest dung beetle species richness within Europe. Natural coastal habitats in this region are among those which have suffered severe human disturbance. We studied dung beetle diversity and distinctiveness within one of the most important coastal protected areas in the west Euro‐Mediterranean region (the regional Park of Camargue, southern France) and made comparisons of dung beetle assemblages with other nearby Mediterranean localities, as well as with other coastal protected area (Doñana National Park, Spain). Our finding showed that: (1) The species richness of coastal habitats in the Camargue is low and only grasslands showed a similar level of species richness and abundance to inland habitats of other Mediterranean localities. The unique habitats of the coastal area (beaches, dunes and marshes) are largely colonized by species widely distributed in the hinterland. (2) In spite of their low general distinctiveness, dune and marsh edges are characterized by the occurrence of two rare, vulnerable, specialized and large roller dung beetle species of the genus Scarabaeus. As with other Mediterranean localities, current findings suggest a recent decline of Scarabaeus populations and the general loss of coastal dung beetle communities in Camargue. (3) The comparison of dung beetle assemblages between the Camargue and Doñana shows that, in spite of the low local dung beetle species richness in the Camargue, the regional dung beetle diversity is similar between both protected areas. Unique historical and geographical factors can explain the convergence in regional diversity as well as the striking divergence in the composition of dung beetle assemblages between both territories.  相似文献   

5.
刘新民 《昆虫学报》2011,54(12):1406-1415
为阐明放牧对粪金龟子群落的影响, 于2004年5-9月, 选择内蒙古典型草原不同放牧强度 (无放牧、 适度放牧和过度放牧) 草地为样地, 采用诱捕法采集粪金龟子标本, 分析了放牧对粪金龟子群落的影响。结果表明: 共捕获粪金龟子60 839头, 隶属于3科5属24种。放牧影响下, 粪金龟子群落个体数、 种数和生物量均发生显著变化, 不同粪金龟子对放牧的敏感性不同, 并具有明显的季节特征。Pearson相关分析表明, 春季粪金龟子群落个体数、 生物量、 种数以及符号蜉金龟Aphodius comma和马粪蜉金龟Aphodius subterraneus个体数与放牧强度提高之间存在显著负相关关系; 夏季粪金龟子群落种数和叉角粪金龟Ceratophyus polyceros个体数与放牧强度提高也呈显著负相关; 秋季粪金龟子群落生物量和种数以及费氏粪金龟Ceratophyus fischeri、 墨侧裸蜣螂Gymnopleurus mopsus和小驼嗡蜣螂Onthophagus gibbulus个体数与放牧强度提高之间存在显著正相关关系。依据体长、 体重和行为特征, 将粪金龟子划分为4个功能群, 放牧对体型较小的功能群Ⅲ和Ⅳ的影响较显著。指示值计算结果表明, 费氏粪金龟、 毛蜉金龟Aphodius scofa和马粪蜉金龟可以作为不同放牧强度草地的特征指示种。  相似文献   

6.
7.
Species turnover of monkey beetle (Scarabaeidae: Hopliini) assemblages along disturbance and environmental gradients was examined at three sites within the arid, winter rainfall Namaqualand region of the succulent Karoo, South Africa. At each site two study plots with comparable vegetation and soils but contrasting management (grazing) histories were chosen, the disturbed sites having fewer perennial shrubs and generally more annuals and bare ground. Beetles collected using coloured pan-traps showed a consistently higher abundance in disturbed sites. Lepithrix, Denticnema and Heterochelus had higher numbers in disturbed plots, while Peritrichia numbers were lower in disturbed areas. Measures of species richness and diversity were consistently higher in the undisturbed sites. Distinctive assemblages of monkey beetles and plants occurred at each site. A high compositional turnover ( diversity) was recorded for both monkey beetles and plants along a rainfall gradient; between-site diversity values ranged from 0.7 to 0.8 (out of a maximum of 1.0). Species turnover of beetles was higher between the disturbed sites along the environmental gradient than the corresponding undisturbed sites. The high monkey beetle species turnover is probably linked to the high plant species turnover, a distinctive feature of succulent Karoo landscapes. Monkey beetles are useful indicators of overgrazing disturbance in Namaqualand, as their pollinator guilds are apparently disrupted by overgrazing. A shift away from perennial and bulb pollinator guilds towards those favouring weedy annuals was observed in disturbed areas. The consequences to ecosystem processes due to the effects of disturbance on monkey beetle communities and the role of monkey beetles as indicators of disturbance is discussed, as well as the implications of disturbance on monkey beetle pollination guilds.  相似文献   

8.
1. The habitat heterogeneity hypothesis predicts that heterogeneous habitats may provide more niches and diverse ways of exploiting environmental resources, thereby allowing more species to coexist, persist and diversify. 2. We aimed to investigate how an edge-interior gradient related to forest complexity influences species composition, abundance and richness of dung beetles in the western Amazon rainforest. We expected dung beetle abundance and richness to increase along the forest edge-interior gradient, in accordance with the habitat heterogeneity hypothesis. We also expected strong changes in species composition driven by species turnover in the forest interior and nestedness along the forest edges. We sampled dung beetles using baited pitfall traps across an edge-interior gradient. We also assessed the variation in forest features along the edge-interior gradient to identify changes in forest complexity. 3. Both species richness and abundance of dung beetles increased along the forest edge-interior, following the gradient of forest complexity. The Sorensen dissimilarity of dung beetle assemblages was higher among sampling units placed near the forest edge, although neither turnover, nor nestedness was different between the extremes of the forest edge-interior gradient. There was a clear compositional change along the edge-interior gradient mostly driven by species turnover. Individual indicator value analysis revealed that species were strongly associated with the forest interior conditions. 4. The simplification of the Amazon rainforest near clearings causes compositional changes in dung beetle assemblages. These changes are characterised by species-poor and low-abundance assemblages and may impair dung beetle ecological functions and therefore forest recovery.  相似文献   

9.
In this paper we address the effects of anthropogenic disturbance and replacement of Brazilian Coastal sandy vegetation (restingas) on dung beetles communities. We sampled dung beetles in the four main vegetative physiognomies of Guriri Island, Espírito Santo State: forest restinga, restinga Clusia, disturbed restinga (from burning events), and pastures. We placed four sets of two pitfall traps (baited with horse and human dung) in four independent areas of each vegetation type, and collected 14,534 individuals of 13 dung beetle species. Neither log10 of individuals nor log10 of species richness were good predictors of restinga disturbance. However, a significant amount of variation in dung beetle abundance and richness could be explained by bait type. Ordination of these sites using hybrid multidimensional scaling revealed a gradient of habitat disturbance from undisturbed restinga samples to pasture. Dung beetle communities along this gradient demonstrated a complete turnover in species composition, from restinga‐specialists to invasive and generalists species respectively. This complete turnover signals the local extirpation of forest‐adapted species in disturbed and converted areas. Only a single dung beetle species in preserved restingas is protected by Brazilian law (Dichotomius schiffleri). Given the extent of the clearing of restinga habitat, the conservation status of dung beetles associated with restinga forest gives cause for concern.  相似文献   

10.
11.
Five pitfall traps baited with 150–200 g of fresh cattle dung were installed for 24 h at weekly intervals. A total of 991 dung beetles from 11 genera, 31 species and three subfamilies was obtained. The community was dominated by Oniticellus spinipes individuals by 32.3%. Ten species appeared only once during the collection period and species composition and dominance changed throughout the period. The overall pattern we detected in the organization of the dung beetle community is that the species richness, abundance and diversity rise in September and the 2nd week of October. The dung beetle community was found to be affected by season.  相似文献   

12.
小兴安岭阔叶红松林地表甲虫Beta多样性   总被引:2,自引:1,他引:2  
Beta多样性用来衡量集群内物种组成的变异性,可以被分解为空间物种转换和物种集群镶嵌两个组分,是揭示群落构建机制的重要基础。目前开展了较多的地上生态系统beta多样性研究,然而地下生态系统beta多样性进展缓慢。以小兴安岭凉水和丰林自然保护区为研究地区,于2015年8、10月采用陷阱法对阔叶红松林进行调查,揭示地表甲虫(步甲科、隐翅虫科、葬甲科)的beta多样性。结果表明:(1)凉水共发现39种、856只地表甲虫,丰林共发现43种、1182只地表甲虫。8月凉水明显具有较高的全部甲虫(三个科的总和)物种多样性和丰富度,10月正好相反。(2)凉水和丰林之间地表甲虫beta多样性的差异仅发现于8月的步甲科和葬甲科之间。(3)凉水和丰林地表甲虫的beta多样性主要由空间物种转换组成,物种集群镶嵌对beta多样性的贡献很小,说明地表甲虫物种组成变异主要由本地物种之间较高的转换引起。研究表明小兴安岭阔叶红松林地表甲虫的beta多样性主要由空间物种转换组成,在揭示群落构建机制过程中,其内部物种交换和环境调控不容忽视。  相似文献   

13.

Aim

To test a method for rapidly and reliably collecting species distribution and abundance data over large tropical areas [known as Neotropical Biodiversity Mapping Initiative (NeoMaps)], explicitly seeking to improve cost‐ and time‐efficiencies over existing methods (i.e. museum collections, literature), while strengthening local capacity for data collection.

Location

Venezuela.

Methods

We placed a grid over Venezuela (0.5 × 0.5 degree cells) and applied a stratified sampling design to select a minimum set of 25 cells spanning environmental and biogeographical variation. We implemented standardized field sampling protocols for birds, butterflies and dung beetles, along transects on environmental gradients (‘gradsects’). We compared species richness estimates from our field surveys at national, bioregional and cell scales to those calculated from data compiled from museum collections and the literature. We estimated the variance in richness, composition, relative abundance and diversity between gradsects that could be explained by environmental and biogeographical variables. We also estimated total survey effort and cost.

Results

In one field season, we covered 8% of the country and recorded 66% of all known Venezuelan dung beetles, 52% of Pierid butterflies and 37% of birds. Environmental variables explained 27–60% of variation in richness for all groups and 13–43% of variation in abundance and diversity in dung beetles and birds. Bioregional and environmental variables explained 43–58% of the variation in the dissimilarity matrix between transects for all groups.

Main conclusions

NeoMaps provides reliable estimates of richness, composition and relative abundance, required for rigorous monitoring and spatial prediction. NeoMaps requires a substantial investment, but is highly efficient, achieving survey goals for each group with 1‐month fieldwork and about US$ 1–8 per km2. Future work should focus on other advantages of this type of survey, including the ability to monitor the changes in relative abundance and turnover in species composition, and thus overall diversity patterns.
  相似文献   

14.
The degradation and replacement of native ecosystems affects both their taxonomic and functional biodiversity. However, native species may find a gradient of habitat suitability in different land uses within a region. The aim of this study was to evaluate the effect of land use on the taxonomic and functional diversity of dung beetle assemblages in the southern Atlantic forest of Argentina. Dung beetles were sampled in both the native forest (control) and different land uses (Pine and Yerba mate plantations and cattle pastures) during the 2014 summer, using pitfall traps baited with human feces and rotten meat. Samplings were taken from 20 different sites, with five replicates of each land use and the native forest (100 pitfall traps in total). A total of 1699 beetles of 27 species were captured. Canthon quinquemaculatus, Canthon conformis and Dichotomius sericeus were the most abundant species. Cattle pastures were the land use most negatively affected in their taxonomic and functional diversity, particularly large paracoprid dung beetles. Pine plantations maintained their taxonomic and functional diversity in relation to the native forest and Yerba mate plantations showed, in general, an intermediate situation. Microclimatic conditions (average temperature and humidity and maximum temperature) were correlated with functional diversity (the proportion of large paracoprid dung beetles decreased with increasing temperature) and are probably good predictors to explain the observed patterns of functional diversity of dung beetles. The development of sustainable production systems that preserve the native biodiversity requires the conservation of key components from the ecological niche of native species, especially microclimatic conditions.  相似文献   

15.
We analysed seasonality of dung decay time and the influence of rainfall, leaf fall, beetle attack and moisture on dung decay. Our study was carried out at the Ipassa Reserve, north-east Gabon. We compared the seasonality of dung decay with the seasonality of dung beetle abundance and guild structure. Dung beetle activity was the main factor influencing dung decay in our study site. Decay time was the highest during the main dry season (3.4 days) and the lowest during the short rainy season (0.7 days). Dung decay time was closely related to dung beetle abundance, especially to the abundance of nocturnal beetles. We discuss the implications of such results for duiker survey methods based on dung pellet counts in areas where decay time is extremely short or unknown.  相似文献   

16.
Standardized sampling methods are essential for comparing species diversity and abundance patterns across different studies and sites. Although dung beetles are widely used as a focal taxon in biodiversity studies, nothing appears to be known about the effective sampling area of dung‐baited traps. Mark‐recapture experiments using Canthon acutus showed that at least 50 m between traps should minimize trap interference, and that wind affects trap detectability. Consequently, we propose a standardized dung beetle sampling design.  相似文献   

17.
Dung beetles (Coleoptera: Scarabaeidae) are undoubtedly the most typical and ecologically relevant insects of grazed alpine habitats because they provide valuable ecological services such as biological pest control and soil fertilization. Despite the great ecological contribution of these insects to pasture ecosystem functioning, little is known about their direct or indirect relationships with pastoral activities. The main aim of the study was to assess whether dung beetle diversity was influenced by different intensities of cattle grazing. Dung beetle communities of two adjacent alpine valleys within the Maritime Alps Natural Park (north-western Italian Alps), representing overgrazed and ungrazed pastures, were studied by pitfall trapping. A hierarchical design (three levels: valleys, transects, and replicates) was established for additive partitioning of γ-diversity and Indicator Species Analysis. Evenness and Shannon diversity were significantly higher at the ungrazed than at the overgrazed site because abundances were much more evenly distributed at the former than at the latter site (where one species was dominant over all the others). Dung beetle abundance and species richness of the overgrazed graminaceous pasture vegetation types were in most cases significantly lower than those of the ungrazed nongraminaceous vegetation type. In the additive partitioning of γ -diversity analysis relative to the whole study area, the randomization procedure indicated that the contribution of β to γ-diversity was significantly different from that expected by chance, suggesting that one or more environmental factors has intervened to change the partition of total diversity in the system considered. The analysis of the preferences and fidelity of species (Indicator Species Analysis) showed that only one species chose overgrazed pastures; all the others positively selected the ungrazed site, or the only ungrazed pasture vegetation type (Rumicetum alpini Beger) occurring at the overgrazed site. Results conformed to evidences that overgrazing represents a serious threat to the conservation of alpine dung beetles. To conserve local dung beetle assemblages, especially in protected areas, cattle overgrazing should be avoided. This does not mean, however, that pastoral activities are incompatible with biodiversity conservation. The contemporaneous presence of wild ungulates and low intensity extensive pastoral activities may be useful to preserve both local dung beetle assemblages and alpine pasture ecosystems.  相似文献   

18.
Abstract. 1. Regional scarabaeid dung beetle assemblages in southern Africa may contain over 100 species, ranging in live weight from 10 mg to 10 g. These show a wide variety of dung-use and reproductive strategies.
2. To facilitate analysis of these diverse assemblages, a system of classification analogous to guilds is proposed. Scarabaeid dung beetle species are allocated to one of seven functional groups (FGs) according to the way they use and disrupt dung. Each group therefore contains a set of species which are functional analogues of each other. This classification provides a conceptual framework within which to analyse the structure of dung beetle assemblages and the interactions between dung beetles and other dung-breeding species such as coprophagous flies.
3. There is a clear hierarchy of functional groups in their ability to compete for dung. Competitively dominant groups such as the large ball rollers (FG I) and fast-burying tunnellers (FG III) are mostly large, aggressive beetles which rapidly remove dung from the pad. The smaller ball rollers (FG II) are also effective competitors for dung. Subordinate groups are those which bury dung slowly over many days (FG IV and V) and those which breed inside the pad (FG VII, endocoprids). Kleptocoprids (FG VI) breed in dung buried by other beetles and so are not part of the hierarchy.
4. The use of this classification is illustrated by reference to three contrasting assemblages of dung beetles in a summer rainfall region of southern Africa. The potential of these beetles for biological control of dung-breeding flies is discussed.  相似文献   

19.
Timber tree plantations are considered for rehabilitating forest biodiversity in the tropics, but knowledge on determinants of faunal diversity patterns in such human-modified forest landscapes is scarce. We quantified the composition of beetle assemblages on three native timber species (Anacardium excelsum, Cedrela odorata and Tabebuia rosea) planted on former pasture to assess effects of tree species identity, tree species diversity, and insecticide treatment on a speciose group of animals in tropical plantations. The beetle assemblage parameters ‘abundance’, ‘species richness’, ‘Chao1 estimated species richness’ and ‘Shannon diversity’ were significantly reduced by insecticide treatment for each tree species. Shannon diversity increased with stand diversification for T. rosea but not for A. excelsum and C. odorata. Species similarity was highest (lowest species turnover) between beetle assemblages on T. rosea, and it was lowest (highest species turnover) for assemblages on insecticide-treated trees of all timber species. Considering trophic guilds, herbivorous beetles dominated on all tree species and in all planting schemes. Herbivores were significantly more dominant on T. rosea and C. odorata than on A. excelsum, suggesting that tree species identity affects beetle guild structure on plantation trees. Insecticide-treated stands harbored less herbivores than untreated stands, but exhibited a high abundance of predator beetle species. Our study revealed that even young pasture-afforestations can host diverse beetle assemblages and thus contribute to biodiversity conservation in the tropics. The magnitude of this contribution, however, may strongly depend on management measures and on the selected tree species.  相似文献   

20.

Aim

We investigated changes in dung beetle β‐diversity components along a subtropical elevational gradient, to test whether turnover or nestedness‐related processes drive the dissimilarity of assemblages at spatial and temporal scales.

Location

An elevational gradient (200–1,600 m a.s.l.) of the Atlantic Forest in southern Brazil.

Methods

We investigated the extent to which β‐diversity varied along the elevational gradient (six elevations) at both spatial (among sites at different elevations) and temporal (different months at the same site) scales. We compared both the turnover and nestedness‐related dissimilarity of species and genera using multiple‐site or multiple‐month measures and tested whether these measurements were different from random expectations.

Results

A mid‐elevation peak in species richness along the elevational gradient was observed, and the lowest richness occurred at the highest elevations. We found two different groups of species, lowland and highland species, with a mixing of groups at intermediate elevations. The turnover component of β‐diversity was significantly higher for both spatial (i.e. elevational) and temporal changes in species composition. However, when the data for genera by site were considered, the elevational turnover value decreased in relative importance. Nestedness‐related processes are more important for temporal dissimilarity patterns at higher elevation sites.

Main conclusions

Spatial and temporal turnover of dung beetle species is the most important component of β‐diversity along the elevational gradient. High‐elevation assemblages are not subsets of assemblages that inhabit lower elevations, but this relationship ceases when β‐diversity is measured at the generic level. Environmental changes across elevations may be the cause of the differential establishment of distinctive species, but these species typically belong to the same higher taxonomic rank. Conservation strategies should consider elevational gradients in case‐specific scenarios as they may contain distinct species assemblages in lowlands vs. highlands.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号